Scale invariant Einstein-Cartan theory in three dimensions

被引:1
|
作者
Adak, Muzaffer [1 ,2 ]
Ozdemir, Nese [1 ]
Sert, Ozcan [2 ]
机构
[1] Istanbul Tech Univ, Dept Phys, TR-34469 Istanbul, Turkiye
[2] Pamukkale Univ, Fac Sci, Dept Phys, Denizli, Turkiye
来源
EUROPEAN PHYSICAL JOURNAL C | 2023年 / 83卷 / 02期
关键词
D O I
10.1140/epjc/s10052-023-11255-x
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We retreat the well-known Einstein-Cartan theory by slightly modifying the covariant derivative of spinor field by investigating double cover of the Lorentz group. We first write the Lagrangian consisting of the Einstein-Hilbert term, Dirac term and a scalar field term in a non-Riemannian spacetime with curvature and torsion. Then by solving the affine connection analytically we reformulate the theory in the Riemannian spacetime in a self-consistent way. Finally we discuss our results and give future perspectives on the subject.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Scale invariant Einstein–Cartan theory in three dimensions
    Muzaffer Adak
    Nese Ozdemir
    Ozcan Sert
    The European Physical Journal C, 83
  • [2] Einstein-Cartan gravity, matter, and scale-invariant generalization
    M. Shaposhnikov
    A. Shkerin
    I. Timiryasov
    S. Zell
    Journal of High Energy Physics, 2020
  • [3] Einstein-Cartan gravity, matter, and scale-invariant generalization
    Shaposhnikov, M.
    Shkerin, A.
    Timiryasov, I.
    Zell, S.
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (10)
  • [4] LINEARIZED EINSTEIN-CARTAN THEORY
    ARKUSZEWSKI, W
    KOPCZYNSKI, W
    PONOMARIEV, VN
    ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1974, 21 (01): : 89 - 95
  • [5] Signature of Einstein-Cartan theory
    Costa, Bruno Arderucio
    Bonder, Yuri
    PHYSICS LETTERS B, 2024, 849
  • [6] Scale invariant Einstein-Cartan gravity and flat space conformal symmetry
    Georgios K. Karananas
    Mikhail Shaposhnikov
    Sebastian Zell
    Journal of High Energy Physics, 2023
  • [7] Erratum to: Einstein-Cartan gravity, matter, and scale-invariant generalization
    M. Shaposhnikov
    A. Shkerin
    I. Timiryasov
    S. Zell
    Journal of High Energy Physics, 2021
  • [8] Scale invariant Einstein-Cartan gravity and flat space conformal symmetry
    Karananas, Georgios K.
    Shaposhnikov, Mikhail
    Zell, Sebastian
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (11)
  • [9] Energy problem in the Einstein-Cartan theory
    Polishchuk, R. F.
    GRAVITATION & COSMOLOGY, 2015, 21 (03): : 220 - 235
  • [10] Global string in Einstein-Cartan theory
    Rahaman, F
    Hossain, ST
    Mukherji, R
    Maity, K
    Mal, S
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (02): : 117 - 122