The Buckling Operator: Inverse Boundary Value Problem

被引:0
作者
Ma, Yanjun [1 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Dirichlet-to-Neumann map; buckling operator; uniqueness; 1ST-ORDER PERTURBATION; POLYHARMONIC OPERATOR; CONDUCTIVITY PROBLEM; BIHARMONIC OPERATOR; UNIQUENESS;
D O I
10.3390/math11020268
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a zeroth-order perturbation q(x) of the buckling operator delta(2)-kappa delta, which can be uniquely determined by measuring the Dirichlet-to-Neumann data on the boundary. We extend the conclusion of the biharmonic operator to the buckling operator, but the Dirichlet-to-Neumann map given in this study is more meaningful and general.
引用
收藏
页数:11
相关论文
共 34 条
[1]   DETERMINING ROUGH FIRST ORDER PERTURBATIONS OF THE POLYHARMONIC OPERATOR [J].
Assylbekov, Yernat ;
Iyer, Karthik .
INVERSE PROBLEMS AND IMAGING, 2019, 13 (05) :1045-1066
[2]   Determining the first order perturbation of a polyharmonic operator on admissible manifolds [J].
Assylbekov, Yernat M. ;
Yang, Yang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (01) :590-614
[3]   Inverse problems for the perturbed polyharmonic operator with coefficients in Sobolev spaces with non-positive order [J].
Assylbekov, Yernat M. .
INVERSE PROBLEMS, 2016, 32 (10)
[4]   Calderon's inverse conductivity problem in the plane [J].
Astala, Kari ;
Paivarinta, Lassi .
ANNALS OF MATHEMATICS, 2006, 163 (01) :265-299
[5]   INVERSE PROBLEMS FOR THE FRACTIONAL-LAPLACIAN WITH LOWER ORDER NON-LOCAL PERTURBATIONS [J].
Bhattacharyya, S. ;
Ghosh, T. ;
Uhlmann, G. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (05) :3053-3075
[6]   AN INVERSE PROBLEM FOR THE MAGNETIC SCHRODINGER OPERATOR ON RIEMANNIAN MANIFOLDS FROM PARTIAL BOUNDARY DATA [J].
Bhattacharyya, Sombuddha .
INVERSE PROBLEMS AND IMAGING, 2018, 12 (03) :801-830
[7]   Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions [J].
Brown, RM ;
Uhlmann, GA .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1997, 22 (5-6) :1009-1027
[8]   An isoperimetric inequality for fundamental tones of free plates with nonzero Poisson's ratio [J].
Chasman, L. M. .
APPLICABLE ANALYSIS, 2016, 95 (08) :1700-1735
[9]   An Isoperimetric Inequality for Fundamental Tones of Free Plates [J].
Chasman, L. M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 303 (02) :421-449
[10]   Inverse problem of electro-seismic conversion [J].
Chen, Jie ;
Yang, Yang .
INVERSE PROBLEMS, 2013, 29 (11)