Design and Control of a Novel Variable Stiffness Series Elastic Actuator

被引:25
作者
Sariyildiz, Emre [1 ]
Mutlu, Rahim [2 ]
Roberts, Jon [1 ]
Kuo, Chin-Hsing [1 ]
Ugurlu, Barkan [3 ]
机构
[1] Univ Wollongong, Sch Mech Mat Mechatron & Biomed Engn, Wollongong, NSW 2522, Australia
[2] Univ Wollongong Dubai, Fac Engn & Informat Sci, Dubai 20183, U Arab Emirates
[3] Ozyegin Univ, Dept Mech Engn, TR-34794 Istanbul, Turkiye
关键词
Compliant robotics; physical robot-environment interaction; safe robotics; series elastic actuators (SEAs); variable stiffness actuators (VSAs); ROBOT; IMPEDANCE;
D O I
10.1109/TMECH.2022.3232471
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article expounds the design and control of a new variable stiffness series elastic actuator (VSSEA). It is established by employing a modular mechanical design approach that allows us to effectively optimize the stiffness modulation characteristics and power density of the actuator. The proposed VSSEA possesses the following features: no limitation in the work range of output link; a wide range of stiffness modulation (similar to 20 N center dot m/rad to similar to 1 KN center dot m/rad); low-energy-cost stiffness modulation at equilibrium and nonequilibrium positions; compact design and high torque density (similar to 36 N center dot m/kg); and high-speed stiffness modulation (similar to 3000 N center dot m/rad/s). Such features can help boost the safety and performance of many advanced robotic systems, e.g., a cobot that physically interacts with unstructured environments and an exoskeleton that provides physical assistance to human users. These features can also enable us to utilize variable stiffness property to attain various regulation and trajectory tracking control tasks only by employing conventional controllers, eliminating the need for synthesizing complex motion control systems in compliant actuation. To this end, it is experimentally demonstrated that the proposed VSSEA is capable of precisely tracking the desired position and force control references through the use of the conventional proportional-integral-derivative controllers.
引用
收藏
页码:1534 / 1545
页数:12
相关论文
共 45 条
  • [1] Awad MI, 2016, 2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), P323, DOI 10.1109/IROS.2016.7759074
  • [2] Large and small deflections of a cantilever beam
    Beléndez, T
    Neipp, C
    Beléndez, A
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2002, 23 (03) : 371 - 379
  • [3] Bicchi A., 2008, Springer Handbook of Robotics, P1335, DOI [DOI 10.1007/978-3-540-30301-5_58, 10.1007/978-3-540-30301-558, DOI 10.1007/978-3-540-30301-558]
  • [4] Variable Stiffness Spring Actuators for Low-Energy-Cost Human Augmentation
    Braun, David J.
    Chalvet, Vincent
    Chong, Tze-Hao
    Apte, Salil S.
    Hogan, Neville
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2019, 35 (06) : 1435 - 1449
  • [5] Criterion for the Design of Low-Power Variable Stiffness Mechanisms
    Chalvet, Vincent
    Braun, David J.
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2017, 33 (04) : 1002 - 1010
  • [6] Implementation of an Upper-Limb Exoskeleton Robot Driven by Pneumatic Muscle Actuators for Rehabilitation
    Chen, Chun-Ta
    Lien, Wei-Yuan
    Chen, Chun-Ting
    Wu, Yu-Cheng
    [J]. ACTUATORS, 2020, 9 (04) : 1 - 19
  • [7] A Robot Joint With Variable Stiffness Using Leaf Springs
    Choi, Junho
    Hong, Seonghun
    Lee, Woosub
    Kang, Sungchul
    Kim, Munsang
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2011, 27 (02) : 229 - 238
  • [8] Dunwoodie E., 2020, PROC IEEE 16 INT WOR, P1
  • [9] Fumagalli M, 2012, P IEEE RAS-EMBS INT, P1943, DOI 10.1109/BioRob.2012.6290686
  • [10] Groothuis S, 2012, IEEE INT CONF ROBOT, P3355, DOI 10.1109/ICRA.2012.6224868