Plant disease detection using machine learning approaches

被引:23
|
作者
Ahmed, Imtiaz [1 ]
Yadav, Pramod Kumar [1 ]
机构
[1] Natl Inst Technol Srinagar, Comp Sci & Engn, Srinagar, India
关键词
crops classification; GLCM; machine learning; plant diseases; remote sensing; texture analysis; CLASSIFICATION;
D O I
10.1111/exsy.13136
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Plant health care is the science of anticipating and diagnosing the advent of life-threatening diseases in plants. The fatality rate of plants can be reduced by diagnosing them for any signs early on. The early detection of such diseases is one possibility for lowering plant mortality rates. Machine learning (ML), a type of artificial intelligence technology that allows researchers to enhance and develop without being explicitly programmed, is used in this study to build early prediction models for plant disease diagnosis. Due to the similarities of crops throughout the early phonological phases, crop classification has proved problematic. ML can be applied to a variety of tasks recognize different types of crops at low altitude platforms with the help of drones that provide high-resolution optical imagery. The drones are employed to photograph phonological stages, and these greyscale photographs are then utilized to develop grey level co-occurrence matrices-based characteristics. In this article, the proposed plant disease detection models are developed using ML approaches such as random forest-nearest neighbours, linear regression, Naive Bayes, neural networks, and support vector machine. The performance of the generated plants disease risk evaluation model is calculated using unbiased metrics such as true positive rate, true negative rate, precision, recall, and F1-score method are all factors to consider. The results revealed that the ensemble plants disease model outperforms the other proposed and developed plant disease detection models. The proposed and developed plant disease prediction models aimed to predict disease detection in the early stages, allowing for early preventive actions and predictive maintenance.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Plant Leaf Disease Detection using Machine Learning
    Tulshan, Amrita S.
    Raul, Nataasha
    2019 10TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2019,
  • [2] A systematic review of machine learning and deep learning approaches in plant species detection
    Barhate, Deepti
    Pathak, Sunil
    Singh, Bhupesh Kumar
    Jain, Amit
    Dubey, Ashutosh Kumar
    SMART AGRICULTURAL TECHNOLOGY, 2024, 9
  • [3] Machine Learning and Deep Learning for Plant Disease Classification and Detection
    Balafas, Vasileios
    Karantoumanis, Emmanouil
    Louta, Malamati
    Ploskas, Nikolaos
    IEEE ACCESS, 2023, 11 : 114352 - 114377
  • [4] Cardiovascular Disease Detection Using Machine Learning
    Ibarra, Rodrigo
    Leon, Jaime
    Avila, Ivan
    Ponce, Hiram
    COMPUTACION Y SISTEMAS, 2022, 26 (04): : 1661 - 1668
  • [5] A Review on Machine Learning Classification Techniques for Plant Disease Detection
    Shruthi, U.
    Nagaveni, V
    Raghavendra, B. K.
    2019 5TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING & COMMUNICATION SYSTEMS (ICACCS), 2019, : 281 - 284
  • [6] Machine Learning Approaches for the Detection of Schizophrenia Using Structural MRI
    Tyagi, Ashima
    Singh, Vibhav Prakash
    Gore, Manoj Madhava
    ADVANCED NETWORK TECHNOLOGIES AND INTELLIGENT COMPUTING, ANTIC 2022, PT II, 2023, 1798 : 423 - 439
  • [7] Machine Learning and Deep Learning Approaches for Guava Disease Detection
    K. Paramesha
    Shruti Jalapur
    Shalini Hanok
    Kiran Puttegowda
    G. Manjunatha
    Bharath Kumara
    SN Computer Science, 6 (4)
  • [8] Survey on crop pest detection using deep learning and machine learning approaches
    Chithambarathanu, M.
    Jeyakumar, M. K.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (27) : 42277 - 42310
  • [9] IoT-Based Plant Disease Detection Using Machine Learning: A Systematic Literature Review
    Mohammad, Abdallah
    Eleyan, Derar
    Eleyan, Amna
    Bejaoui, Tarek
    2024 INTERNATIONAL CONFERENCE ON SMART APPLICATIONS, COMMUNICATIONS AND NETWORKING, SMARTNETS-2024, 2024,
  • [10] Machine and deep learning approaches for alzheimer disease detection using magnetic resonance images: An updated review
    Menagadevi, M.
    Devaraj, Somasundaram
    Madian, Nirmala
    Thiyagarajan, D.
    MEASUREMENT, 2024, 226