Componentwise linearity of powers of cover ideals

被引:0
|
作者
Selvaraja, S. [1 ]
Skelton, Joseph W. [2 ]
机构
[1] Chennai Math Inst, H1,SIPCOT IT Pk, Chennai 603103, Tamil Nadu, India
[2] Tulane Univ, Dept Math, 6823 St Charles Ave, New Orleans, LA 70118 USA
关键词
Cover ideal; Symbolic power; Componentwise linear; Vertex decomposable graphs; SYMBOLIC POWERS; GRAPHS; REGULARITY;
D O I
10.1007/s10801-022-01160-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite simple graph and J (G) denote its vertex cover ideal in a polynomial ring over a field. The k-th symbolic power of J (G) is denoted by J (G)((k)). In this paper, we give a criterion for cover ideals of vertex decomposable graphs to have the property that all their symbolic powers are not componentwise linear. Also, we give a necessary and sufficient condition on G so that J (G)(k) is a componentwise linear ideal for some (equivalently, for all) k >= 2 when G is a graph such that G\N-G[A] has a simplicial vertex for any independent set A of G. Using this result, we prove that J (G)(k) is a componentwise linear ideal for several classes of graphs for all k >= 2. In particular, if G is a bipartite graph, then J (G) is a componentwise linear ideal if and only if J (G)(k) is a componentwise linear ideal for some (equivalently, for all) k >= 2.
引用
收藏
页码:111 / 134
页数:24
相关论文
共 50 条
  • [21] Regularity of powers of cover ideals of unimodular hypergraphs
    Nguyen Thu Hang
    Tran Nam Trung
    JOURNAL OF ALGEBRA, 2018, 513 : 159 - 176
  • [22] Symbolic powers of monomial ideals and vertex cover algebras
    Herzog, Juergen
    Hibi, Takayuki
    Trung, Ngo Viet
    ADVANCES IN MATHEMATICS, 2007, 210 (01) : 304 - 322
  • [23] Comparing powers of edge ideals
    Janssen, Mike
    Kamp, Thomas
    Vander Woude, Jason
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (10)
  • [24] ROOTED ORDER ON MINIMAL GENERATORS OF POWERS OF SOME COVER IDEALS
    Erey, Nursel
    OSAKA JOURNAL OF MATHEMATICS, 2022, 59 (02) : 253 - 267
  • [25] On the Stanley Depth of Powers of Monomial Ideals
    Fakhari, S. A. Seyed
    MATHEMATICS, 2019, 7 (07)
  • [26] Componentwise linearity and the gcd condition are preserved by the polarization
    Nemati, Navid
    Pournaki, Mohammad Reza
    Yassemi, Siamak
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2021, 64 (04): : 391 - 399
  • [27] Symbolic powers of sums of ideals
    Huy Tai Ha
    Hop Dang Nguyen
    Ngo Viet Trung
    Tran Nam Trung
    MATHEMATISCHE ZEITSCHRIFT, 2020, 294 (3-4) : 1499 - 1520
  • [28] Regularity and Koszul property of symbolic powers of monomial ideals
    Dung, Le Xuan
    Hien, Truong Thi
    Nguyen, Hop D.
    Trung, Tran Nam
    MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (3-4) : 1487 - 1522
  • [29] Regularity and Koszul property of symbolic powers of monomial ideals
    Le Xuan Dung
    Truong Thi Hien
    Hop D. Nguyen
    Tran Nam Trung
    Mathematische Zeitschrift, 2021, 298 : 1487 - 1522
  • [30] Chordality, d-collapsibility, and componentwise linear ideals
    Bigdeli, Mina
    Faridi, Sara
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 172