ADEPT: Accurate Diffusion Echo-Planar imaging with multi-contrast shoTs

被引:3
作者
Shafieizargar, Banafshe [1 ,2 ]
Jeurissen, Ben [1 ,2 ]
Poot, Dirk H. J. [3 ]
Klein, Stefan [3 ]
Van Audekerke, Johan [2 ,4 ]
Verhoye, Marleen [2 ,4 ]
den Dekker, Arnold J. [1 ,2 ]
Sijbers, Jan [1 ,2 ]
机构
[1] Univ Antwerp, Dept Phys, Iimec Vis Lab, Univ Pl 1,DN 103, B-2610 Antwerp, Belgium
[2] Univ Antwerp, NEURO Res Ctr Excellence, Antwerp, Belgium
[3] Erasmus MC, Dept Radiol & Nucl Med, Biomed Imaging Grp Rotterdam, Rotterdam, Netherlands
[4] Univ Antwerp, Dept Biomed Sci, Bioimaging Lab, Antwerp, Belgium
基金
欧盟地平线“2020”;
关键词
diffusion MRI; model-based reconstruction; multi-shot EPI; phase correction; QMRI; MODEL-BASED RECONSTRUCTION; RICIAN DISTRIBUTION; WEIGHTED-MRI; RESOLUTION; MOTION; CONVERGENCE; ARTIFACTS; SENSE; EPI;
D O I
10.1002/mrm.29398
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose To introduce a novel imaging and parameter estimation framework for accurate multi-shot diffusion MRI. Theory and Methods We propose a new framework called ADEPT (Accurate Diffusion Echo-Planar imaging with multi-contrast shoTs) that enables fast diffusion MRI by allowing diffusion contrast settings to change between shots in a multi-shot EPI acquisition (i.e., intra-scan modulation). The framework estimates diffusion parameter maps directly from the acquired intra-scan modulated k-space data, while simultaneously accounting for shot-to-shot phase inconsistencies. The performance of the estimation framework is evaluated using Monte Carlo simulation studies and in-vivo experiments and compared to that of reference methods that rely on parallel imaging for shot-to-shot phase correction. Results Simulation and real-data experiments show that ADEPT yields more accurate and more precise estimates of the diffusion metrics in multi-shot EPI data in comparison with the reference methods. Conclusion ADEPT allows fast multi-shot EPI diffusion MRI without significantly degrading the accuracy and precision of the estimated diffusion maps.
引用
收藏
页码:396 / 410
页数:15
相关论文
共 56 条
[31]   Model for the correction of motion-induced phase errors in multishot diffusion-weighted-MRI of the head: Are cardiac-motion-induced phase errors reproducible from beat-to-beat? [J].
O'Halloran, R. L. ;
Holdsworth, S. ;
Aksoy, M. ;
Bammer, R. .
MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (02) :430-440
[32]   Minimal gradient encoding for robust estimation of diffusion anisotropy [J].
Papadakis, NG ;
Murrills, CD ;
Hall, LD ;
Huang, CLH ;
Carpenter, TA .
MAGNETIC RESONANCE IMAGING, 2000, 18 (06) :671-679
[33]   Multishot diffusion-weighted FSE using PROPELLER MRI [J].
Pipe, JG ;
Farthing, VG ;
Forbes, KP .
MAGNETIC RESONANCE IN MEDICINE, 2002, 47 (01) :42-52
[34]  
Pruessmann KP, 1999, MAGNET RESON MED, V42, P952, DOI 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO
[35]  
2-S
[36]   Advances in sensitivity encoding with arbitrary k-space trajectories [J].
Pruessmann, KP ;
Weiger, M ;
Börnert, P ;
Boesiger, P .
MAGNETIC RESONANCE IN MEDICINE, 2001, 46 (04) :638-651
[37]   Joint Image Reconstruction and Phase Corruption Maps Estimation in Multi-shot Echo Planar Imaging [J].
Rabanillo, Inaki ;
Sanz-Estebanez, Santiago ;
Aja-Fernandez, Santiago ;
Hajnal, Joseph ;
Alberola-Lopez, Carlos ;
Cordero-Grande, Lucilio .
COMPUTATIONAL DIFFUSION MRI (CDMRI 2018), 2019, :19-27
[38]   A Unified Maximum Likelihood Framework for Simultaneous Motion and T1 Estimation in Quantitative MR T1 Mapping [J].
Ramos-Llorden, Gabriel ;
den Dekker, Arnold J. ;
Van Steenkiste, Gwendolyn ;
Jeurissen, Ben ;
Vanhevel, Floris ;
Van Audekerke, Johan ;
Verhoye, Marleen ;
Sijbers, Jan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (02) :433-446
[39]  
Shafieizargar B., 2021, EUROPEAN SOC MAGNETI, V34, pS51
[40]   Multi-contrast multi-shot EPI for accelerated diffusion MRI [J].
Shafieizargar, Banafshe ;
Jeurissen, Ben ;
Poot, Dirk H. J. ;
den Dekker, Arnold J. ;
Sijbers, Jan .
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, :3869-3872