Barrow holographic dark energy models in f(Q) symmetric teleparallel gravity with Lambert function distribution

被引:7
|
作者
Koussour, M. [1 ]
Shekh, S. H. [2 ]
Filali, H. [3 ]
Bennai, M. [1 ,3 ]
机构
[1] Hassan II Univ Casablanca, Quantum Phys & Magnetism Team, Lab Phys Condensed Matter, Fac Sci Ben Msik, Casablanca, Morocco
[2] SPM Sci & Gilani Arts Commerce Coll, Dept Math, Ghatanji 445301, Maharashtra, India
[3] Univ Mohammed V Agdal, Fac Sci, Lab High Energy Phys Modeling & Simulat, Rabat, Morocco
关键词
Barrow holographic dark energy; f(Q) gravity; Lambert function; cosmology; DECELERATION; CONSTRAINTS; UNIVERSE; MATTER;
D O I
10.1142/S0219887823500196
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper presents Barrow holographic dark energy (infrared cut-off is the Hubble horizon) suggested by Barrow [The area of a rough black hole, Phys. Lett. B 808 (2020) 135643] recently in an anisotropic Bianchi type-I Universe within the framework of f(Q) symmetric teleparallel gravity, where the non-metricity scalar Q is responsible for the gravitational interaction. We consider two cases: Interacting and non-interacting models of pressureless dark matter and Barrow holographic dark energy by solving f(Q) symmetric teleparallel field equations. To find the exact solutions of the field equations, we assume that the time-redshift relation follows a Lambert function distribution as t(z) = mt(0)/l g(z), where g(z) = LambertW [l/me(l-ln(1+z)/m)] , m and l are non-negative constants and t(0) represents the age of the Universe. Moreover, we discuss several cosmological parameters such as energy density, equation of state (EoS) and skewness parameters, squared sound speed, and (omega(B) - omega(B)') plane. Finally, we found the values of the deceleration parameter (DP) for the Lambert function distribution as q((z=0)) = -0.45 and q((z=-1)) - -1 which are consistent with recent observational data, i.e. DP evolves with cosmic time from initial deceleration to late-time acceleration.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Bianchi type-I Barrow holographic dark energy model in symmetric teleparallel gravity
    Koussour, M.
    Shekh, S. H.
    Bennai, M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2022, 37 (28-29):
  • [2] Renyi holographic dark energy models in teleparallel gravity
    Bhardwaj, Vinod Kumar
    Dixit, Archana
    Pradhan, Anirudh
    Krishnannair, Syamala
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2022, 37 (28-29):
  • [3] Symmetric teleparallel gravity with holographic Ricci dark energy
    Shekh, H. S.
    Pradhan, Anirudh
    Dixit, Archana
    INDIAN JOURNAL OF PHYSICS, 2024, 98 (07) : 2623 - 2632
  • [4] Models of holographic dark energy in f(Q) gravity
    Shekh, S. H.
    PHYSICS OF THE DARK UNIVERSE, 2021, 33
  • [5] Symmetric teleparallel gravity with holographic Ricci dark energy
    H. S. Shekh
    Anirudh Pradhan
    Archana Dixit
    Indian Journal of Physics, 2024, 98 : 2623 - 2632
  • [6] Probing dark energy properties with Barrow Holographic Model in f (Q, C) gravity
    Myrzakulov, N.
    Shekh, S. H.
    Pradhan, Anirudh
    PHYSICS OF THE DARK UNIVERSE, 2025, 47
  • [7] Scalar Field Models of Barrow Holographic Dark Energy in f(R,T) Gravity
    Sharma, Umesh Kumar
    Kumar, Mukesh
    Varshney, Gunjan
    UNIVERSE, 2022, 8 (12)
  • [8] The impact of f(Q, T) gravity on Barrow holographic dark energy: A cosmological analysis
    Myrzakulov, N.
    Shekh, S. H.
    Pradhan, Anirudh
    Ghaderi, K.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2025,
  • [9] Reconstructions of F(P) gravity from barrow holographic dark energy, barrow agegraphic dark energy and new barrow agegraphic dark energy
    Singha, Anup Kumar
    Sadhukhan, Rupali
    Debnath, Ujjal
    MODERN PHYSICS LETTERS A, 2025, 40 (01)
  • [10] Energy-momentum squared symmetric Teleparallel gravity: f(Q, TμνTμν) gravity
    Rudra, Prabir
    PHYSICS OF THE DARK UNIVERSE, 2022, 37