Bezier variant of summation-integral type operators

被引:1
|
作者
Neha [1 ]
Deo, Naokant [1 ]
Pratap, Ram [2 ]
机构
[1] Delhi Technol Univ, Dept Appl Math, Bawana Rd, Delhi 110042, India
[2] Univ Delhi, Dept Math, Miranda House, Delhi 110007, India
关键词
Inverse Polya-Eggenberger distribution; Rate of convergence; Modulus of continuity; Bounded variation; POLYA; APPROXIMATION;
D O I
10.1007/s12215-021-00695-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The motive of this article is to introduce the Bezier variant of a sequence of summation-integral type operators involving inverse Polya-Eggenberger distribution and Paltanea operators [17]. For these operators, we estimate the approximation behaviour including first and second-order modulus of smoothness. Lastly, we establish the rate of convergence with a class of functions of derivatives of bounded variation.
引用
收藏
页码:889 / 900
页数:12
相关论文
共 50 条
  • [21] Bezier-Summation-Integral-Type Operators That Include Polya-Eggenberger Distribution
    Mohiuddine, Syed Abdul
    Kajla, Arun
    Alotaibi, Abdullah
    MATHEMATICS, 2022, 10 (13)
  • [22] On the Bezier variant of generalized Kantorovich type Balazs operators
    Gupta, V
    Ispir, N
    APPLIED MATHEMATICS LETTERS, 2005, 18 (09) : 1053 - 1061
  • [23] The Bezier variant of Kantorovitch operators
    Gupta, V
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (2-3) : 227 - 232
  • [24] The Bezier variant of a new type λ-Bernstein operators
    Lian, Bo-yong
    Cai, Qing-bo
    2019 6TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2019), 2019, : 605 - 609
  • [25] Bezier variant of the Bernstein–Durrmeyer type operators
    Tuncer Acar
    P. N. Agrawal
    Trapti Neer
    Results in Mathematics, 2017, 72 : 1341 - 1358
  • [26] Rate of convergence for the Bezier variant of the MKZD operators
    Gupta, Vijay
    Karsli, Harun
    GEORGIAN MATHEMATICAL JOURNAL, 2007, 14 (04) : 651 - 659
  • [27] BEZIER VARIANT OF MODIFIED SRIVASTAVA-GUPTA OPERATORS
    Neer, Trapti
    Ispir, Nurhayat
    Agrawal, Purshottam Narain
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2017, 58 (02): : 199 - 214
  • [28] Bezier variant of Bernstein-Durrmeyer blending-type operators
    Prakash, Chandra
    Deo, Naokant
    Verma, D. K.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (06)
  • [29] Bezier variant of the Bernstein-Durrmeyer type operators
    Acar, Tuncer
    Agrawal, P. N.
    Neer, Trapti
    RESULTS IN MATHEMATICS, 2017, 72 (03) : 1341 - 1358
  • [30] Bezier Variant of the Szasz-Durrmeyer Type Operators Based on the Poisson-Charlier Polynomials
    Kajla, Arun
    Miclaus, Dan
    FILOMAT, 2020, 34 (10) : 3265 - 3273