Well-posedness of short time solutions and non-uniform dependence on the initial data for a shallow water wave model in critical Besov space

被引:0
|
作者
Zhou, Changtai [1 ]
Xiao, Honglin [1 ]
Lai, Shaoyong [2 ]
机构
[1] Yili Normal Univ, Sch Math & Stat, Yining 835000, Peoples R China
[2] Southwestern Univ Finance & Econ, Sch Math, Chengdu 611130, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2024年 / 205卷 / 02期
关键词
A shallow water wave model; Well-posedness of short time solution; Non-uniform continuous dependence; Besov space; FORNBERG-WHITHAM EQUATION; BLOW-UP PHENOMENA; INTEGRABLE EQUATION; GLOBAL EXISTENCE; CAUCHY-PROBLEM; BREAKING; CONTINUITY;
D O I
10.1007/s00605-024-01959-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A nonlinear shallow water wave equation containing the famous Degasperis-Procesi and Fornberg-Whitham equations is investigated. The well-posedness of short time solutions is established to illustrate that the solution map of the equation is continuous in the critical Besov space B infinity,11(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B<^>{1}_{\infty ,1}(\mathbb {R})$$\end{document}. Using the methods to construct high and low frequency functions, we prove that the solution map of the equation is non-uniform continuous dependence on the initial data in B infinity,11(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B<^>{1}_{\infty ,1}(\mathbb {R})$$\end{document}.
引用
收藏
页码:415 / 431
页数:17
相关论文
共 50 条
  • [41] Well-Posedness of a Nonlinear Shallow Water Model for an Oscillating Water Column with Time-Dependent Air Pressure
    Edoardo Bocchi
    Jiao He
    Gastón Vergara-Hermosilla
    Journal of Nonlinear Science, 2023, 33
  • [42] Non-uniform continuous dependence on initial data of solutions to the Euler-Poincare system
    Li, Jinlu
    Dai, Li
    Zhu, Weipeng
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (11)
  • [43] Non-uniform continuity on initial data for the two-component b-family system in Besov space
    Wu, Xing
    Li, Cui
    Cao, Jie
    MONATSHEFTE FUR MATHEMATIK, 2023, 201 (02): : 547 - 563
  • [44] Non-uniform continuity on initial data for the two-component b-family system in Besov space
    Xing Wu
    Cui Li
    Jie Cao
    Monatshefte für Mathematik, 2023, 201 : 547 - 563
  • [45] The local well-posedness, existence and uniqueness of weak solutions for a model equation for shallow water waves of moderate amplitude
    Zhou, Shouming
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (12) : 4103 - 4126
  • [46] Non-uniform dependence on periodic initial data for the two-component Fornberg-Whitham system in Besov spaces
    Dutta, Prerona
    Keyfitz, Barbara Lee
    AIMS MATHEMATICS, 2024, 9 (09): : 25284 - 25296
  • [47] Global well-posedness and scattering for the Zakharov system at the critical space in three spatial dimensions with small and radial initial data
    Kato, Isao
    Kinoshita, Shinya
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 518 (01)
  • [48] Global Well-posedness for the Fourth-order Defocusing Cubic Equation with Initial Data Lying in a Critical Sobolev Space
    Chen, Miao
    Wang, Hua
    Yao, Xiaohua
    FRONTIERS OF MATHEMATICS, 2024, : 547 - 580
  • [49] LOCAL WELL-POSEDNESS IN THE CRITICAL BESOV SPACE AND PERSISTENCE PROPERTIES FOR A THREE-COMPONENT CAMASSA-HOLM SYSTEM WITH N-PEAKON SOLUTIONS
    Luo, Wei
    Yin, Zhaoyang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (09) : 5047 - 5066
  • [50] Numerical study of roll wave development for non-uniform initial conditions using steep slope shallow water equations
    Dai, Shubing
    Liu, Xinyuan
    Zhang, Kuandi
    Ma, Yulei
    Liu, Hansheng
    Jin, Sheng
    PHYSICS OF FLUIDS, 2024, 36 (02)