Well-posedness of short time solutions and non-uniform dependence on the initial data for a shallow water wave model in critical Besov space

被引:0
|
作者
Zhou, Changtai [1 ]
Xiao, Honglin [1 ]
Lai, Shaoyong [2 ]
机构
[1] Yili Normal Univ, Sch Math & Stat, Yining 835000, Peoples R China
[2] Southwestern Univ Finance & Econ, Sch Math, Chengdu 611130, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2024年 / 205卷 / 02期
关键词
A shallow water wave model; Well-posedness of short time solution; Non-uniform continuous dependence; Besov space; FORNBERG-WHITHAM EQUATION; BLOW-UP PHENOMENA; INTEGRABLE EQUATION; GLOBAL EXISTENCE; CAUCHY-PROBLEM; BREAKING; CONTINUITY;
D O I
10.1007/s00605-024-01959-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A nonlinear shallow water wave equation containing the famous Degasperis-Procesi and Fornberg-Whitham equations is investigated. The well-posedness of short time solutions is established to illustrate that the solution map of the equation is continuous in the critical Besov space B infinity,11(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B<^>{1}_{\infty ,1}(\mathbb {R})$$\end{document}. Using the methods to construct high and low frequency functions, we prove that the solution map of the equation is non-uniform continuous dependence on the initial data in B infinity,11(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B<^>{1}_{\infty ,1}(\mathbb {R})$$\end{document}.
引用
收藏
页码:415 / 431
页数:17
相关论文
共 50 条