Improving the estimation of atmospheric water vapor pressure using interpretable long short-term memory networks

被引:2
|
作者
Gao, B. [1 ]
Coon, E. T. [1 ]
Thornton, P. E. [1 ]
Lu, D. [2 ]
机构
[1] Oak Ridge Natl Lab, Environm Sci Div, Oak Ridge, TN 37830 USA
[2] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37830 USA
基金
美国能源部;
关键词
Long short-term memory; Interpretable deep learning; Static attributes; Atmospheric humidity; Atmospheric water vapor pressure; RELATIVE-HUMIDITY; SURFACE; MODEL; EVAPOTRANSPIRATION; CLIMATE; DATASET; AIR;
D O I
10.1016/j.agrformet.2024.109907
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Atmospheric water vapor pressure is an essential meteorological control on land surface and hydrologic processes. As it is not as frequently observed as other meteorologic conditions, it is often inferred through the August-Roche-Magnus formula by simply assuming dew point and daily minimum temperatures are equivalent or by empirically correlating the two temperatures using an aridity correction. The performance of both methods varies considerably across different regions and during different time periods; obtaining consistently accurate estimates across space and time remains a great challenge. Here, an interpretable Long Short-Term Memory (iLSTM) network conditioned on static, location specific attributes is proposed to estimate the daily vapor pressure. This approach allows for training a single transferable model using ensemble data from multiple sites and exploring the quantitative dependency of vapor pressure prediction on multiple environmental variables and their histories. To evaluate this approach, three iLSTM model configurations were developed, each considering different site attributes as static variables. For each configuration, multiple model realizations were trained using 83 FLUXNET sites in the United States and Canada, where each realization corresponds to different withheld groups of sites used for model evaluation. Results show that the iLSTM networks noticeably improve the estimation accuracy in comparison with the two assumption-based methods for most sites, reducing the failure rate from 32 % to 10.9 % for the best iLSTM model configuration. Additionally, this network provides reasonable insights into both the relative importance of the time-series input variables and their temporal importance. This method is found to be effective for imputing vapor pressure across space and time.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Enhanced Gaze Tracking Using Convolutional Long Short-Term Memory Networks
    Vo, Minh-Thanh
    Kong, Seong G.
    INTERNATIONAL JOURNAL OF FUZZY LOGIC AND INTELLIGENT SYSTEMS, 2022, 22 (02) : 117 - 127
  • [42] Predictive process model monitoring using long short-term memory networks
    De Smedt, Johannes
    De Weerdt, Jochen
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [43] Mass Spectral Substance Detections Using Long Short-Term Memory Networks
    Liu, Junxiu
    Zhang, Jinlei
    Luo, Yuling
    Yang, Su
    Wang, Jinling
    Fu, Qiang
    IEEE ACCESS, 2019, 7 : 10734 - 10744
  • [44] Deflated reputation using multiplicative long short-term memory neural networks
    Ma, Yixuan
    Zhang, Zhenji
    Li, Deming
    Tang, Mincong
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 118 : 198 - 207
  • [45] Dialog State Tracking Using Long Short-term Memory Neural Networks
    Yang, Xiaohao
    Liu, Jia
    16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 1800 - 1804
  • [46] Anomaly Detection for Controller Area Networks Using Long Short-Term Memory
    Tanksale, Vinayak
    IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 1 : 253 - 265
  • [47] Video captioning using boosted and parallel Long Short-Term Memory networks
    Nabati, Masoomeh
    Behrad, Alireza
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2020, 190
  • [48] Tailings Pond Risk Prediction Using Long Short-Term Memory Networks
    Li, Jianwei
    Chen, Haoyu
    Zhou, Ting
    Li, Xiaowen
    IEEE ACCESS, 2019, 7 : 182527 - 182537
  • [49] Air Quality Forecasting in Madrid Using Long Short-Term Memory Networks
    Pardo, Esteban
    Malpica, Norberto
    BIOMEDICAL APPLICATIONS BASED ON NATURAL AND ARTIFICIAL COMPUTING, PT II, 2017, 10338 : 232 - 239
  • [50] Quantifying the nativeness of antibody sequences using long short-term memory networks
    Wollacott, Andrew M.
    Xue, Chonghua
    Qin, Qiuyuan
    Hua, June
    Bohnuud, Tanggis
    Viswanathan, Karthik
    Kolachalama, Vijaya B.
    PROTEIN ENGINEERING DESIGN & SELECTION, 2019, 32 (07): : 347 - 354