共 39 条
Potential of ion mobility mass spectrometry in cellulose ether analysis: substitution pattern of hydroxyethyl celluloses
被引:3
作者:
Mischnick, Petra
[1
]
Schleicher, Sarah
[1
]
机构:
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Food Chem, Schleinitzstr 20, D-38106 Braunschweig, Germany
关键词:
Electrospray ionization time-of-flight mass spectrometry;
Trapped ion mobility spectrometry;
Hydroxyethyl(methyl)cellulose;
Tandem hydroxyalkylation versus Glc-substitution;
Fingerprint of substitution pattern;
COMPREHENSIVE ANALYSIS;
GLUCOSYL UNITS;
POLYMER-CHAIN;
O-METHYL;
ISOMERS;
OLIGOSACCHARIDES;
IDENTIFICATION;
CHROMATOGRAPHY;
RESOLUTION;
GLUCANS;
D O I:
10.1007/s00216-024-05224-w
中图分类号:
Q5 [生物化学];
学科分类号:
071010 ;
081704 ;
摘要:
Ion mobility mass spectrometry (ESI-tims-ToF-MS, syringe pump infusion) has been applied to glucose and oligosaccharide ethers derived from hydroxyethyl-methyl celluloses (HEMC) and hydroxyethyl celluloses (HEC) after permethylation and partial depolymerization: by hydrolysis without or with subsequent reductive amination with m-amino benzoic acid (mABA) or by reductive cleavage. As model compounds without tandem substitution methoxyethylated methylcellulose was used. Regioisomeric glucose ethers were separated according to their ion mobility, and positions of substitution could be assigned. Glucose ethers including isomers with tandem substitution showed additional signals with a smaller collision cross-section (CCS) than core-substituted isomers. Positional isomers of cellobiose ethers were only partly resolved due to too high complexity but showed a characteristic fingerprint that might allow classifying samples. Relative intensities of signals of glucose ether isomers could only be quantified in case of ABA derivatives with its fixed charge, while sodium adducts of methoxyethyl ethers showed an influence of the MeOEt position on ion yield. Results were in very good agreement with reference analysis. [M + Na]+ adducts of alpha- and beta-anomers of glucose derivatives were separated in IM, complicating position assignment. This could be overcome by reductive cleavage of the permethylated HE(M)C yielding 1,5-anhydroglucitol-terminated oligosaccharides, showing the best resolved fingerprints of the cellobiose ethers of a particular cellulose ether. With this first application of ion mobility MS to the analysis of complex cellulose ethers, the promising potential of this additional separation dimension in mass spectrometry is demonstrated and discussed.
引用
收藏
页码:2527 / 2539
页数:13
相关论文