Vision-based Analytics of Flare Stacks Using Deep Learning Detection

被引:0
|
作者
Al Radi, Muaz [1 ,3 ]
Boumaraf, Said [1 ,3 ]
Karki, Hamad [2 ]
Dias, Jorge [1 ,3 ]
Werghi, Naoufel [1 ,3 ]
Javed, Sajid [1 ,3 ]
机构
[1] Khalifa Univ, Dept Elect Engn & Comp Sci, Abu Dhabi, U Arab Emirates
[2] Khalifa Univ, Dept Mech Engn, Abu Dhabi, U Arab Emirates
[3] Khalifa Univ, Ctr Autonomous Robot Syst, Abu Dhabi, U Arab Emirates
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Flare stacks play a critical role in oil refineries and chemical plants, but monitoring their performance is a challenging task that often requires skilled operators. To address this challenge, we propose a novel approach that combines video capturing and machine learning techniques to automate the monitoring of flare stack operations in realtime. Our vision-based system analyzes captured video footage of the flare stack's scene and employs state-of-the-art deep learning detection models, including YOLOv5, YOLOv7, and the Detection Transformer (DETR), to detect and analyze combustion-related objects such as flame and smoke. Rigorous experiments show that the proposed technique was able to accurately detect flame and smoke objects in flare stacks scene and the best model showed encouraging performance metrics. By leveraging the power of recent deep detection models, our proposed system offers a promising alternative to labor-intensive manual inspection by keeping a continuous and automated watchable eye in combustion quality, facilitating more efficient and reliable flare stack operation analysis.
引用
收藏
页码:467 / 472
页数:6
相关论文
共 50 条
  • [1] Vision-Based Accident Anticipation and Detection Using Deep Learning
    Verma, Ayush
    Khari, Manju
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2024, 27 (03) : 22 - 29
  • [2] Machine Vision-based Defect Detection Using Deep Learning Algorithm
    Kim, Dae-Hyun
    Boo, Seung Bin
    Hong, Hyeon Cheol
    Yeo, Won Gu
    Lee, Nam Yong
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2020, 40 (01) : 47 - 52
  • [3] Deep Learning and Vision-Based Early Drowning Detection
    Shatnawi, Maad
    Albreiki, Frdoos
    Alkhoori, Ashwaq
    Alhebshi, Mariam
    INFORMATION, 2023, 14 (01)
  • [4] Adaptive Deep Learning for a Vision-based Fall Detection
    Doulamis, Anastasios
    Doulamis, Nikolaos
    11TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS (PETRA 2018), 2018, : 558 - 565
  • [5] Automated Vision-Based Crack Detection on Concrete Surfaces Using Deep Learning
    Rajadurai, Rajagopalan-Sam
    Kang, Su-Tae
    APPLIED SCIENCES-BASEL, 2021, 11 (11):
  • [6] Vision-Based UAV Detection and Tracking Using Deep Learning and Kalman Filter
    Alshaer, Nancy
    Abdelfatah, Reham
    Ismail, Tawfik
    Mahmoud, Haitham
    COMPUTATIONAL INTELLIGENCE, 2025, 41 (01)
  • [7] Vision-based human fall detection systems using deep learning: A review
    Alam, Ekram
    Sufian, Abu
    Dutta, Paramartha
    Leo, Marco
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
  • [8] Vision-based concrete crack detection using deep learning-based models
    Nabizadeh E.
    Parghi A.
    Asian Journal of Civil Engineering, 2023, 24 (7) : 2389 - 2403
  • [9] Vision-based Navigation Using Deep Reinforcement Learning
    Kulhanek, Jonas
    Derner, Erik
    de Bruin, Tim
    Babuska, Robert
    2019 EUROPEAN CONFERENCE ON MOBILE ROBOTS (ECMR), 2019,
  • [10] Vision-based Obstacle Avoidance Using Deep Learning
    Gaya, Joel O.
    Goncalves, Lucas T.
    Duarte, Amanda C.
    Zanchetta, Breno
    Drews-, Paulo, Jr.
    Botelho, Silvia S. C.
    PROCEEDINGS OF 13TH LATIN AMERICAN ROBOTICS SYMPOSIUM AND 4TH BRAZILIAN SYMPOSIUM ON ROBOTICS - LARS/SBR 2016, 2016, : 7 - 12