Temperature compensation in high accuracy accelerometers using multi-sensor and machine learning methods

被引:1
|
作者
Iafolla, Lorenzo [1 ]
Santoli, Francesco [2 ]
Carluccio, Roberto [1 ]
Chiappini, Stefano [1 ]
Fiorenza, Emiliano [2 ]
Lefevre, Carlo [2 ]
Loffredo, Pasqualino [2 ]
Lucente, Marco [2 ]
Morbidini, Alfredo [2 ]
Pignatelli, Alessandro [1 ]
Chiappini, Massimo [1 ]
机构
[1] Ist Nazl Geofis & Vulcanol, Via Vigna Murata 605, I-00143 Rome, Italy
[2] Ist Astrofis & Planetol Spaziali IAPS, Ist Nazl Astrofis INAF, Via Fosso del Cavaliere 100, I-00133 Rome, Italy
关键词
Accelerometer; Temperature; Multi-sensor; Machine learning; Deep learning; Thermal gradient; Gravimeter; ITALIAN SPRING ACCELEROMETER; ISA;
D O I
10.1016/j.measurement.2023.114090
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Temperature is a major source of inaccuracy in high-sensitivity accelerometers and gravimeters. Active thermal control systems require power and may not be ideal in some contexts such as airborne or spaceborne applications. We propose a solution that relies on multiple thermometers placed within the accelerometer to measure temperature and thermal gradient variations. Machine Learning algorithms are used to relate the temperatures to their effect on the accelerometer readings. However, obtaining labeled data for training these algorithms can be difficult. Therefore, we also developed a training platform capable of replicating temperature variations in a laboratory setting. Our experiments revealed that thermal gradients had a significant effect on accelerometer readings, emphasizing the importance of multiple thermometers. The proposed method was experimentally tested and revealed a great potential to be extended to other sources of inaccuracy as well as to other types of measuring systems, such as magnetometers or gyroscopes.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Data quality evaluation for smart multi-sensor process monitoring using data fusion and machine learning algorithms
    Segreto, Tiziana
    Teti, Roberto
    PRODUCTION ENGINEERING-RESEARCH AND DEVELOPMENT, 2023, 17 (02): : 197 - 210
  • [22] Machine learning applied to multi-sensor information to reduce false alarm rate in the ICU
    Gal Hever
    Liel Cohen
    Michael F. O’Connor
    Idit Matot
    Boaz Lerner
    Yuval Bitan
    Journal of Clinical Monitoring and Computing, 2020, 34 : 339 - 352
  • [23] Machine learning applied to multi-sensor information to reduce false alarm rate in the ICU
    Hever, Gal
    Cohen, Liel
    O'Connor, Michael F.
    Matot, Idit
    Lerner, Boaz
    Bitan, Yuval
    JOURNAL OF CLINICAL MONITORING AND COMPUTING, 2020, 34 (02) : 339 - 352
  • [24] Assessing Machine Learning Models on Temporal and Multi-Sensor Data for Mapping Flooded Areas
    Negri, Rogerio Galante
    da Costa, Fernanda Dacio
    da Silva Andrade Ferreira, Bruna
    Rodrigues, Matheus Wesley
    Bankole, Abayomi
    Casaca, Wallace
    TRANSACTIONS IN GIS, 2025, 29 (02)
  • [25] Nonlinearity compensation of DIC-based multi-sensor measurement
    Dutta, Lachit
    Hazarika, Anil
    Bhuyan, Manabendra
    MEASUREMENT, 2018, 126 : 13 - 21
  • [26] Improving the Accuracy of Carbon Dot Temperature Sensing Using Multi-Dimensional Machine Learning
    Do''ring, Aaron
    Qiu, Yuqing
    Rogach, Andrey L.
    ACS APPLIED NANO MATERIALS, 2024, 7 (02) : 2258 - 2269
  • [27] Deep Transform Learning for Multi-Sensor Fusion
    Sahu, Saurabh
    Kumar, Kriti
    Majumdar, Angshul
    Chandra, M. Girish
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 1996 - 2000
  • [28] Optimising carbon fixation through agroforestry: Estimation of aboveground biomass using multi-sensor data synergy and machine learning
    Singh, R. K.
    Biradar, C. M.
    Behera, M. D.
    Prakash, A. J.
    Das, P.
    Mohanta, M. R.
    Krishna, G.
    Dogra, A.
    Dhyani, S. K.
    Rizvi, J.
    ECOLOGICAL INFORMATICS, 2024, 79
  • [29] Potato Leaf Area Index Estimation Using Multi-Sensor Unmanned Aerial Vehicle (UAV) Imagery and Machine Learning
    Yu, Tong
    Zhou, Jing
    Fan, Jiahao
    Wang, Yi
    Zhang, Zhou
    REMOTE SENSING, 2023, 15 (16)
  • [30] Online motion accuracy compensation of industrial servomechanisms using machine learning approaches
    Bilancia, Pietro
    Locatelli, Alberto
    Tutarini, Alessio
    Mucciarini, Mirko
    Iori, Manuel
    Pellicciari, Marcello
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2025, 91