Temperature compensation in high accuracy accelerometers using multi-sensor and machine learning methods

被引:3
作者
Iafolla, Lorenzo [1 ]
Santoli, Francesco [2 ]
Carluccio, Roberto [1 ]
Chiappini, Stefano [1 ]
Fiorenza, Emiliano [2 ]
Lefevre, Carlo [2 ]
Loffredo, Pasqualino [2 ]
Lucente, Marco [2 ]
Morbidini, Alfredo [2 ]
Pignatelli, Alessandro [1 ]
Chiappini, Massimo [1 ]
机构
[1] Ist Nazl Geofis & Vulcanol, Via Vigna Murata 605, I-00143 Rome, Italy
[2] Ist Astrofis & Planetol Spaziali IAPS, Ist Nazl Astrofis INAF, Via Fosso del Cavaliere 100, I-00133 Rome, Italy
关键词
Accelerometer; Temperature; Multi-sensor; Machine learning; Deep learning; Thermal gradient; Gravimeter; ITALIAN SPRING ACCELEROMETER; ISA;
D O I
10.1016/j.measurement.2023.114090
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Temperature is a major source of inaccuracy in high-sensitivity accelerometers and gravimeters. Active thermal control systems require power and may not be ideal in some contexts such as airborne or spaceborne applications. We propose a solution that relies on multiple thermometers placed within the accelerometer to measure temperature and thermal gradient variations. Machine Learning algorithms are used to relate the temperatures to their effect on the accelerometer readings. However, obtaining labeled data for training these algorithms can be difficult. Therefore, we also developed a training platform capable of replicating temperature variations in a laboratory setting. Our experiments revealed that thermal gradients had a significant effect on accelerometer readings, emphasizing the importance of multiple thermometers. The proposed method was experimentally tested and revealed a great potential to be extended to other sources of inaccuracy as well as to other types of measuring systems, such as magnetometers or gyroscopes.
引用
收藏
页数:11
相关论文
共 31 条
[1]   Airborne LaCoste & Romberg gravimetry: a space domain approach [J].
Abbasi, M. ;
Barriot, J. P. ;
Verdun, J. .
JOURNAL OF GEODESY, 2007, 81 (04) :269-283
[2]   Review of deep learning: concepts, CNN architectures, challenges, applications, future directions [J].
Alzubaidi, Laith ;
Zhang, Jinglan ;
Humaidi, Amjad J. ;
Al-Dujaili, Ayad ;
Duan, Ye ;
Al-Shamma, Omran ;
Santamaria, J. ;
Fadhel, Mohammed A. ;
Al-Amidie, Muthana ;
Farhan, Laith .
JOURNAL OF BIG DATA, 2021, 8 (01)
[3]   Investigation of temperature sensitivity of a MEMS gravimeter based on geometric anti-spring [J].
Belwanshi, Vinod ;
Prasad, Abhinav ;
Toland, Karl ;
Middlemiss, Richard ;
Paul, Douglas ;
Hammond, Giles .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (12)
[4]  
Bruce P., 2020, Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python
[5]   Investigation of the thermal deformation of a chip-scale packaged optical accelerometer [J].
Fang, Weidong ;
Wang, Chen ;
Bai, Jian ;
Chen, Jiaxiao ;
Yao, Yuan ;
Lu, Qianbo .
MEASUREMENT, 2020, 163
[6]   Impact of ambient temperature on spring-based relative gravimeter measurements [J].
Fores, B. ;
Champollion, C. ;
Le Moigne, N. ;
Chery, J. .
JOURNAL OF GEODESY, 2017, 91 (03) :269-277
[7]   Performance assessment of the relative gravimeter Scintrex CG-6 [J].
Francis, O. .
JOURNAL OF GEODESY, 2021, 95 (10)
[8]  
Geron A., 2019, Hands-on Machine Learning with Scikit-Learn, Keras and TensorFlow
[9]   A comparison of stable platform and strapdown airborne gravity [J].
Glennie, CL ;
Schwarz, KP ;
Bruton, AM ;
Forsberg, R ;
Olesen, AV ;
Keller, K .
JOURNAL OF GEODESY, 2000, 74 (05) :383-389
[10]   Temperature Drift Compensation of a MEMS Accelerometer Based on DLSTM and ISSA [J].
Guo, Gangqiang ;
Chai, Bo ;
Cheng, Ruichu ;
Wang, Yunshuang .
SENSORS, 2023, 23 (04)