An introductory review on the application of principal component analysis in the data exploration of the chemical analysis of food samples

被引:9
|
作者
Souza, Anderson Santos [1 ,4 ]
Bezerra, Marcos Almeida [2 ]
Cerqueira, Uillian Mozart Ferreira Mata [3 ]
Rodrigues, Caiene Jesus Oliveira [1 ]
Santos, Bianca Cotrim [1 ]
Novaes, Cleber Galvao [2 ]
Almeida, Erica Raina Venancio [2 ]
机构
[1] Univ Fed Bahia, Inst Multidisciplinar Saude, Campus Anisio Teixeira,Rua Hormindo Barros 58, BR-45029094 Vitoria da Conquista, BA, Brazil
[2] Univ Estadual Sudoeste Bahia, Dept Ciencias & Tecnol, Campus Jequie,Rua Jose Moreira Sobrinho, BR-45206190 Jequie, BA, Brazil
[3] Univ Fed Bahia, Inst Quim, Campus Federacao Ondina,Rua Barao Geremoabo, BR-40170115 Salvador, BA, Brazil
[4] Univ Fed Bahia, Inst Nacl Ciencia & Tecnol Energia & Ambiente INCT, BR-40170115 Salvador, BA, Brazil
关键词
Principal component analysis; Multivariate analysis; Food samples; HIERARCHICAL CLUSTER-ANALYSIS; MINERAL-CONTENT; CLASSIFICATION; SPECTROSCOPY; ACIDS; TEA;
D O I
10.1007/s10068-023-01509-5
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Principal component analysis (PCA) is currently one of the most used multivariate data analysis techniques for evaluating information from food analysis. In this review, a brief introduction to the theoretical principles that underlie PCA will be given, in addition to presenting the most commonly used computer programs. An example from the literature was discussed to illustrate the use of this chemometric tool and interpretation of graphs and parameters obtained. A list of recently published articles will also be presented, in order to show the applicability and potential of the technique in the food analysis field.
引用
收藏
页码:1323 / 1336
页数:14
相关论文
共 50 条
  • [21] The application of principal component analysis to drug discovery and biomedical data
    Giuliani, Alessandro
    DRUG DISCOVERY TODAY, 2017, 22 (07) : 1069 - 1076
  • [22] Multiple visualisation in data analysis: A ViSta application for principal component analysis.
    Ledesma, Ruben
    Gabriel Molina, J.
    Young, Forrest W.
    Valero-Mora, Pedro
    PSICOTHEMA, 2007, 19 (03) : 497 - 505
  • [23] Principal component analysis with georeferenced data An application in precision agriculture
    Cordoba, Mariano
    Balzarini, Monica
    Bruno, Cecilia
    Luis Costa, Jose
    REVISTA DE LA FACULTAD DE CIENCIAS AGRARIAS, 2012, 44 (01) : 27 - 39
  • [24] Data Analysis Using Principal Component Analysis
    Sehgal, Shrub
    Singh, Harpreet
    Agarwal, Mohit
    Bhasker, V.
    Shantanu
    2014 INTERNATIONAL CONFERENCE ON MEDICAL IMAGING, M-HEALTH & EMERGING COMMUNICATION SYSTEMS (MEDCOM), 2015, : 45 - 48
  • [25] CORRELATION OF CHEMICAL AND SENSORY DATA BY PRINCIPAL COMPONENT FACTOR-ANALYSIS
    MENG, AK
    BRENNER, L
    SUFFET, IH
    WATER SCIENCE AND TECHNOLOGY, 1992, 25 (02) : 49 - 56
  • [26] Application in the Teaching of Principal Component Analysis
    Ren, Xueli
    Dai, Yubiao
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON EDUCATION, MANAGEMENT, INFORMATION AND COMPUTER SCIENCE (ICEMC 2017), 2017, 73 : 412 - 416
  • [27] Application of microcalorimetry and principal component analysis
    Wang, Jian
    Cheng, Danhong
    Zeng, Nan
    Xia, Houlin
    Fu, Yong
    Yan, Dan
    Zhao, Yanling
    Xiao, Xiaohe
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2010, 102 (01) : 137 - 142
  • [28] APPLICATION OF PRINCIPAL COMPONENT ANALYSIS IN GENETICS
    ABEYWARDENA, V
    JOURNAL OF GENETICS, 1972, 61 (01) : 27 - 51
  • [29] A Mistake Application for Principal Component Analysis
    Han, Run-chun
    Xiao, Ji-xian
    ICIC 2009: SECOND INTERNATIONAL CONFERENCE ON INFORMATION AND COMPUTING SCIENCE, VOL 3, PROCEEDINGS: APPLIED MATHEMATICS, SYSTEM MODELLING AND CONTROL, 2009, : 383 - +
  • [30] Principal component analysis of genetic data
    Reich, David
    Price, Alkes L.
    Patterson, Nick
    NATURE GENETICS, 2008, 40 (05) : 491 - 492