An introductory review on the application of principal component analysis in the data exploration of the chemical analysis of food samples

被引:9
|
作者
Souza, Anderson Santos [1 ,4 ]
Bezerra, Marcos Almeida [2 ]
Cerqueira, Uillian Mozart Ferreira Mata [3 ]
Rodrigues, Caiene Jesus Oliveira [1 ]
Santos, Bianca Cotrim [1 ]
Novaes, Cleber Galvao [2 ]
Almeida, Erica Raina Venancio [2 ]
机构
[1] Univ Fed Bahia, Inst Multidisciplinar Saude, Campus Anisio Teixeira,Rua Hormindo Barros 58, BR-45029094 Vitoria da Conquista, BA, Brazil
[2] Univ Estadual Sudoeste Bahia, Dept Ciencias & Tecnol, Campus Jequie,Rua Jose Moreira Sobrinho, BR-45206190 Jequie, BA, Brazil
[3] Univ Fed Bahia, Inst Quim, Campus Federacao Ondina,Rua Barao Geremoabo, BR-40170115 Salvador, BA, Brazil
[4] Univ Fed Bahia, Inst Nacl Ciencia & Tecnol Energia & Ambiente INCT, BR-40170115 Salvador, BA, Brazil
关键词
Principal component analysis; Multivariate analysis; Food samples; HIERARCHICAL CLUSTER-ANALYSIS; MINERAL-CONTENT; CLASSIFICATION; SPECTROSCOPY; ACIDS; TEA;
D O I
10.1007/s10068-023-01509-5
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Principal component analysis (PCA) is currently one of the most used multivariate data analysis techniques for evaluating information from food analysis. In this review, a brief introduction to the theoretical principles that underlie PCA will be given, in addition to presenting the most commonly used computer programs. An example from the literature was discussed to illustrate the use of this chemometric tool and interpretation of graphs and parameters obtained. A list of recently published articles will also be presented, in order to show the applicability and potential of the technique in the food analysis field.
引用
收藏
页码:1323 / 1336
页数:14
相关论文
共 50 条
  • [1] An introductory review on the application of principal component analysis in the data exploration of the chemical analysis of food samples
    Anderson Santos Souza
    Marcos Almeida Bezerra
    Uillian Mozart Ferreira Mata Cerqueira
    Caiene Jesus Oliveira Rodrigues
    Bianca Cotrim Santos
    Cleber Galvão Novaes
    Erica Raina Venâncio Almeida
    Food Science and Biotechnology, 2024, 33 : 1323 - 1336
  • [2] An Exploration of the Application of Principal Component Analysis in Big Data Processing
    Li G.
    Qin Y.
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [3] Principal Component Analysis: A Natural Approach to Data Exploration
    Gewers, Felipe L.
    Ferreira, Gustavo R.
    De Arruda, Henrique F.
    Silva, Filipi N.
    Comin, Cesar H.
    Amancio, Diego R.
    Costa, Luciano Da F.
    ACM COMPUTING SURVEYS, 2021, 54 (04)
  • [4] A procedure for correlation of chemical and sensory data in drinking water samples by principal component factor analysis
    Meng, AK
    Suffet, IH
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1997, 31 (02) : 337 - 345
  • [5] Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra
    Beattie, J. Renwick
    Esmonde-White, Francis W. L.
    APPLIED SPECTROSCOPY, 2021, 75 (04) : 361 - 375
  • [6] Principal component analysis in application to Brillouin microscopy data
    Mahmodi, Hadi
    Poulton, Christopher G.
    Leslie, Mathew N.
    Oldham, Glenn
    Ong, Hui Xin
    Langford, Steven J.
    Kabakova, Irina, V
    JOURNAL OF PHYSICS-PHOTONICS, 2024, 6 (02):
  • [7] Longitudinal Principal Component Analysis With an Application to Marketing Data
    Kinson, Christopher
    Tang, Xiwei
    Zuo, Zhen
    Qu, Annie
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (02) : 335 - 350
  • [8] Principal Component Analysis of Complex Data and Application to Climatology
    Camiz, Sergio
    Creta, Silvia
    CLASSIFICATION, (BIG) DATA ANALYSIS AND STATISTICAL LEARNING, 2018, : 77 - 85
  • [9] Component retention in principal component analysis with application to cDNA microarray data
    Cangelosi, Richard
    Goriely, Alain
    BIOLOGY DIRECT, 2007, 2
  • [10] Component retention in principal component analysis with application to cDNA microarray data
    Richard Cangelosi
    Alain Goriely
    Biology Direct, 2