New ridge parameter estimators for the zero-inflated Conway Maxwell Poisson ridge regression model

被引:3
作者
Ashraf, Bushra [1 ]
Amin, Muhammad [1 ]
Akram, Muhammad Nauman [1 ]
机构
[1] Univ Sargodha, Dept Stat, Sargodha, Pakistan
关键词
Conway-Maxwell Poisson regression; count data; dispersion; maximum likelihood estimator; multicollinearity; ridge estimator; zero inflation; ESTIMATING RENYI ENTROPY; NONPARAMETRIC-ESTIMATION; RESIDUAL ENTROPY; DENSITY; DISTRIBUTIONS; ORDER;
D O I
10.1080/00949655.2024.2305239
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
One of the flexible count data models for dealing with over and under-dispersion with extra zeroes is the zero-inflated Conway-Maxwell Poisson (ZICOMP). The ZICOMP regression coefficients are generally estimated using the maximum likelihood estimator (MLE). In the ZICOMP regression model, when the explanatory variables are correlated, the MLE does not give efficient results. To overcome the effect of multicollinearitymode in the ZICOPM regression, we proposed the ridge regression estimator. To evaluate the performance of the estimator, we use mean squared error (MSE) as the performance evaluation criteria. A theoretical comparison of the ridge estimator with MLE is made to show the superiority of the estimator. The proposed estimator is evaluated with the help of a simulation study and a real application. The results of the simulation study and real application show the superiority of the proposed estimator because it produces a smaller MSE as compared to the MLE.
引用
收藏
页码:1814 / 1840
页数:27
相关论文
共 45 条
[1]   New modified two-parameter Liu estimator for the Conway-Maxwell Poisson regression model [J].
Abonazel, Mohamed R. .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (12) :1976-1996
[2]  
Akram MN., 2022, Concurr Comput Pract Exp, V34, P1
[3]   Kibria-Lukman estimator for the zero inflated negative binomial regression model: theory, simulation and applications [J].
Akram, Muhammad Nauman ;
Amin, Muhammad ;
Afzal, Nimra ;
Kibria, B. M. Golam .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025, 54 (05) :1464-1480
[4]   Modified ridge-type estimator for the zero inflated negative binomial regression model [J].
Akram, Muhammad Nauman ;
Afzal, Nimra ;
Amin, Muhammad ;
Batool, Asia .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (11) :5305-5322
[5]   On the performance of some biased estimators in the gamma regression model: simulation and applications [J].
Akram, Muhammad Nauman ;
Kibria, B. M. Golam ;
Abonazel, Mohamed R. ;
Afzal, Nimra .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (12) :2425-2447
[6]  
Al-Taweel Y., 2020, PERIODICALS ENG NATU, V8, P248, DOI DOI 10.21533/PEN.V8I1.1107
[7]   Performance of ridge estimator in inverse Gaussian regression model [J].
Algamal, Zakariya Yahya .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (15) :3836-3849
[8]   A new method for choosing the biasing parameter in ridge estimator for generalized linear model [J].
Algamal, Zakariya Yahya .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 183 :96-101
[9]   Developing a ridge estimator for the gamma regression model [J].
Algamal, Zakariya Yahya .
JOURNAL OF CHEMOMETRICS, 2018, 32 (10)
[10]   On the estimation of Bell regression model using ridge estimator [J].
Amin, Muhammad ;
Akram, Muhammad Nauman ;
Majid, Abdul .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (03) :854-867