Qualitative and quantitative determination of liquid water distribution in a PEM fuel cell

被引:10
作者
Benkovic, D. [1 ]
Fink, C. [2 ]
Iranzo, A. [3 ]
机构
[1] AVL AST Doo, Ul kneza Koclja 22, Maribor, Slovenia
[2] AVL List GmbH, Hans List Pl 1, Graz, Austria
[3] Univ Seville, Sch Engn, Energy Engn Dept, Thermal Engn Grp, Camino Descubrimientos S-N, Seville 41092, Spain
关键词
PEM fuel cell; Water management; Neutron radiography; Fuel cell model validation; Computational fluid dynamics; FLOW-FIELD; DIFFUSION LAYER; MODEL; PERFORMANCE; TRANSPORT; ACCUMULATION; SIMULATION; PREDICTION; GDL;
D O I
10.1016/j.ijhydene.2023.09.161
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, a numerical investigation of a PEM fuel cell with a five-serpentine flow field is conducted. The numerical model is first validated against the experimental polarization curve, obtaining values for reference exchange current density and cathode charge transfer coefficients for further simulations. The model validation is extended by qualitative and quantitative comparison of the water accumulation within the fuel cell, experimentally obtained with neutron imaging. More intense water accumulation is observed towards the channel outlet due to a progressive saturation of the gas flow with water vapor. Due to the gravity effect, the water mainly accumulates on the lower area of the fuel cell and a higher amount is present in blocks oriented upwards. The used numerical model considers the capillary pressure at the GDL/channel interface, showing to have a great impact on the liquid water thickness profile. Satisfying agreement between simulations and the experiment is achieved.(c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1360 / 1370
页数:11
相关论文
共 42 条
[1]   Liquid water visualization in PEM fuel cells: A review [J].
Bazylak, A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (09) :3845-3857
[2]   In situ observation of the water distribution across a PEFC using high resolution neutron radiography [J].
Boillat, P. ;
Kramer, D. ;
Seyfang, B. C. ;
Frei, G. ;
Lehmann, E. ;
Scherer, G. G. ;
Wokaun, A. ;
Ichikawa, Y. ;
Tasaki, Y. ;
Shinohara, K. .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (04) :546-550
[3]   Dynamics of liquid water in the anode flow channels of PEM fuel cells: A numerical parametric study [J].
Chen, Z. X. ;
Ingham, D. B. ;
Ismail, M. S. ;
Ma, L. ;
Hughes, K. J. ;
Pourkashanian, M. .
JOURNAL OF THE ENERGY INSTITUTE, 2019, 92 (06) :1956-1967
[4]   A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells [J].
Dai, Wei ;
Wang, Haijiang ;
Yuan, Xiao-Zi ;
Martin, Jonathan J. ;
Yang, Daijun ;
Qiao, Jinli ;
Ma, Jianxin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (23) :9461-9478
[5]   CFD Simulation of an Industrial PEM Fuel Cell with Local Degradation Effects [J].
Fink, C. ;
Goessling, S. ;
Karpenko-Jereb, L. ;
Urthaler, P. .
FUEL CELLS, 2020, 20 (04) :431-452
[6]   Advanced CFD Analysis of an Air-cooled PEM Fuel Cell Stack Predicting the Loss of Performance with Time [J].
Fink, C. ;
Karpenko-Jereb, L. ;
Ashton, S. .
FUEL CELLS, 2016, 16 (04) :490-503
[7]  
Fink C, 2017, 6 EUR PEPC EL FOR
[8]   Three-dimensional simulation of polymer electrolyte membrane fuel cells with experimental validation [J].
Fink, Clemens ;
Fouquet, Nicolas .
ELECTROCHIMICA ACTA, 2011, 56 (28) :10820-10831
[9]   Designed experiments to characterize PEMFC material properties and performance [J].
Flick, Sarah ;
Schwager, Maximilian ;
McCarthy, Edward ;
Merida, Walter .
APPLIED ENERGY, 2014, 129 :135-146
[10]   Enhancing liquid water transport by laser perforation of a GDL in a PEM fuel cell [J].
Gerteisen, D. ;
Heilmann, T. ;
Ziegler, C. .
JOURNAL OF POWER SOURCES, 2008, 177 (02) :348-354