Hardness transitions and uniqueness of acyclic colouring

被引:0
作者
Shalu, M. A. [1 ]
Antony, Cyriac [1 ]
机构
[1] Indian Inst Informat Technol Design & Mfg IIITDM, Chennai, India
关键词
Graph colouring; Acyclic colouring; Complexity; Hardness transition; Unique solution problem; IMPROVED BOUNDS; GRAPHS; ALGORITHMS; NUMBER; GIRTH;
D O I
10.1016/j.dam.2023.11.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For k is an element of N, a k-acyclic colouring of a graph G is a function f:V(G)->{0,1,& mldr;,k-1} such that (i) f(u) not equal f(v) for every edge uv of G, and (ii) there is no cycle in G bicoloured by f. For k is an element of N, the problem k-Acyclic Colourability takes a graph g as input and asks whether G admits a k-acyclic colouring. Ochem (EuroComb 2005) proved that 3-Acyclic Colourability is NP-complete for bipartite graphs of maximum degree 4. Mondal et al. (2013) proved that 4-Acyclic Colourability is NP-complete for graphs of maximum degree five. We prove that for k >= 3, k-Acyclic Colourability is NP-complete for bipartite graphs of maximum degree k+1, thereby generalising the NP-completeness result of Ochem, and adding bipartiteness to the NP-completeness result of Mondal et al.. In contrast, k-Acyclic Colourability is polynomial-time solvable for graphs of maximum degree at most 0.38k(3/4). Hence, for k >= 3, the least integer d such that k-Acyclic Colourability in graphs of maximum degree d is NP-complete, denoted by L-a((k)), satisfies 0.38 k(3/4)<L-a((k))) <= k+1. We prove that for k >= 4, k-Acyclic Colourability in d-regular graphs is NP-complete if and only if L-a((k)) <= d <= 2k-3. We also show that it is coNP-hard to check whether an input graph G admits a unique k-acyclic colouring up to colour swaps (resp. up to colour swaps and automorphisms).(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 98
页数:22
相关论文
共 64 条
  • [1] Albertson Michael O., 1978, Glasgow Math. J., V19, P163, DOI [10.1017/S001708950000358X, DOI 10.1017/S001708950000358X]
  • [2] On acyclic colorings of graphs on surfaces
    Alon, N
    Mohar, B
    Sanders, DP
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1996, 94 : 273 - 283
  • [3] Algorithmic aspects of acyclic edge colorings
    Alon, N
    Zaks, A
    [J]. ALGORITHMICA, 2002, 32 (04) : 611 - 614
  • [4] ACYCLIC COLORING OF GRAPHS
    ALON, N
    MCDIARMID, C
    REED, B
    [J]. RANDOM STRUCTURES & ALGORITHMS, 1991, 2 (03) : 277 - 288
  • [5] Entropy compression versus Lovasz Local Lemma
    Alves, Rogerio G.
    Procacci, Aldo
    Sanchis, Remy
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2021, 125
  • [6] Acyclically 3-colorable planar graphs
    Angelini, Patrizio
    Frati, Fabrizio
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 24 (02) : 116 - 130
  • [7] Arora S, 2009, COMPUTATIONAL COMPLEXITY: A MODERN APPROACH, P1, DOI 10.1017/CBO9780511804090
  • [8] Acyclic edge coloring of 2-degenerate graphs
    Basavaraju, Manu
    Chandran, L. Sunil
    [J]. JOURNAL OF GRAPH THEORY, 2012, 69 (01) : 1 - 27
  • [9] Bok J, 2021, Arxiv, DOI [arXiv:2008.09415, 10.48550/arXiv.2008.09415, DOI 10.48550/ARXIV.2008.09415]
  • [10] Bok Jan, 2020, LIPICS, V173