Robust Differential Abundance Analysis of Microbiome Sequencing Data

被引:3
作者
Li, Guanxun [1 ]
Yang, Lu [2 ]
Chen, Jun [2 ]
Zhang, Xianyang [1 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] Mayo Clin, Dept Quantitat Hlth Sci, Rochester, MN 55905 USA
关键词
compositional data; differential abundance analysis; Huber regression; robustness; winsorization; REGRESSION;
D O I
10.3390/genes14112000
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
It is well known that the microbiome data are ridden with outliers and have heavy distribution tails, but the impact of outliers and heavy-tailedness has yet to be examined systematically. This paper investigates the impact of outliers and heavy-tailedness on differential abundance analysis (DAA) using the linear models for the differential abundance analysis (LinDA) method and proposes effective strategies to mitigate their influence. The presence of outliers and heavy-tailedness can significantly decrease the power of LinDA. We investigate various techniques to address outliers and heavy-tailedness, including generalizing LinDA into a more flexible framework that allows for the use of robust regression and winsorizing the data before applying LinDA. Our extensive numerical experiments and real-data analyses demonstrate that robust Huber regression has overall the best performance in addressing outliers and heavy-tailedness.
引用
收藏
页数:23
相关论文
共 36 条
[11]   Qiita: rapid, web-enabled microbiome meta-analysis [J].
Gonzalez, Antonio ;
Navas-Molina, Jose A. ;
Kosciolek, Tomasz ;
McDonald, Daniel ;
Vazquez-Baeza, Yoshiki ;
Ackermann, Gail ;
DeReus, Jeff ;
Janssen, Stefan ;
Swafford, Austin D. ;
Orchanian, Stephanie B. ;
Sanders, Jon G. ;
Shorenstein, Joshua ;
Holste, Hannes ;
Petrus, Semar ;
Robbins-Pianka, Adam ;
Brislawn, Colin J. ;
Wang, Mingxun ;
Rideout, Jai Ram ;
Bolyen, Evan ;
Dillon, Matthew ;
Caporaso, J. Gregory ;
Dorrestein, Pieter C. ;
Knight, Rob .
NATURE METHODS, 2018, 15 (10) :796-+
[12]  
Halekoh U, 2014, J STAT SOFTW, V59, P1
[13]   1972 WALD MEMORIAL LECTURES - ROBUST REGRESSION - ASYMPTOTICS, CONJECTURES AND MONTE-CARLO [J].
HUBER, PJ .
ANNALS OF STATISTICS, 1973, 1 (05) :799-821
[14]  
Kimura D.K., 1988, North American Journal of Fisheries Management, V8, P175, DOI 10.1577/1548-8675(1988)008<0175:ARAIWL>2.3.CO
[15]  
2
[16]   Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome [J].
Knights, Dan ;
Lassen, Kara G. ;
Xavier, Ramnik J. .
GUT, 2013, 62 (10) :1505-1510
[17]   robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models [J].
Koller, Manuel .
JOURNAL OF STATISTICAL SOFTWARE, 2016, 75 (06) :1-24
[18]   Experimental and analytical tools for studying the human microbiome [J].
Kuczynski, Justin ;
Lauber, Christian L. ;
Walters, William A. ;
Parfrey, Laura Wegener ;
Clemente, Jose C. ;
Gevers, Dirk ;
Knight, Rob .
NATURE REVIEWS GENETICS, 2012, 13 (01) :47-58
[19]   UpSet: Visualization of Intersecting Sets [J].
Lex, Alexander ;
Gehlenborg, Nils ;
Strobelt, Hendrik ;
Vuillemot, Romain ;
Pfister, Hanspeter .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014, 20 (12) :1983-1992
[20]   Analysis of compositions of microbiomes with bias correction [J].
Lin, Huang ;
Das Peddada, Shyamal .
NATURE COMMUNICATIONS, 2020, 11 (01)