A Carleson type measure and a family of Möbius invariant function spaces

被引:0
作者
Bao, Guanlong [1 ]
Ye, Fangqin [2 ]
机构
[1] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
[2] Shantou Univ, Business Sch, Shantou 515063, Guangdong, Peoples R China
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2023年 / 34卷 / 06期
关键词
F(p; p-2; s); space; Carleson type measure; Blaschke product; Volterra type operator; Complex differential equation; INTERPOLATION; MULTIPLIERS; OPERATORS; PRODUCTS; F(P;
D O I
10.1016/j.indag.2023.06.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For 0 < s < 1, let {z(n)} be a sequence in the open unit disk such that & sum;(n)(1 - |z(n)|(2))(s) delta(zn) is an s-Carleson measure. In this paper, we consider the connections between this s-Carleson measure and the theory of M & ouml;bius invariant F(p, p-2, s) spaces by the Volterra type operator, the reciprocal of a Blaschke product, and second order complex differential equations having a prescribed zero sequence.(c) 2023 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1338 / 1354
页数:17
相关论文
共 42 条
[1]  
Aleman A., 1995, Complex Variables Theory Appl., V28, P149
[2]  
[Anonymous], 2013, Fields Inst. Commun.
[3]  
ARAZY J, 1985, J REINE ANGEW MATH, V363, P110
[4]  
Aulaskari R., 1995, ANALYSIS, V15, P101, DOI DOI 10.1524/ANLY.1995.15.2.101
[5]  
Baernstein II A., 1980, Aspects of Contemporary Complex Analysis, P3
[6]  
Bao GL, 2022, ANAL MATH PHYS, V12, DOI 10.1007/s13324-022-00752-z
[7]   INTERSECTIONS AND UNIONS OF A GENERAL FAMILY OF FUNCTION SPACES [J].
Bao, Guanlong ;
Wulan, Hasi ;
Ye, Fangqin .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (08) :3307-3315
[8]   The Range of the Cesaro Operator Acting on H∞ [J].
Bao, Guanlong ;
Wulan, Hasi ;
Ye, Fangqin .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2020, 63 (03) :633-642
[9]   BOUNDARY MULTIPLIERS OF A FAMILY OF MOBIUS INVARIANT FUNCTION SPACES [J].
Bao, Guanlong ;
Pau, Jordi .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (01) :199-220
[10]   AN INTERPOLATION PROBLEM FOR BOUNDED ANALYTIC FUNCTIONS [J].
CARLESON, L .
AMERICAN JOURNAL OF MATHEMATICS, 1958, 80 (04) :921-930