ADVANCING AIRBORNE HYPERSPECTRAL DATA PROCESSING AND APPLICATIONS FOR SUSTAINABLE AGRICULTURE USING RTM-BASED MACHINE LEARNING

被引:4
作者
Zhou, Qu [1 ,2 ]
Wang, Sheng [1 ,2 ]
Guan, Kaiyu [1 ,2 ,3 ]
机构
[1] Univ Illinois, Inst Sustainabil Energy & Environm, Agroecosyst Sustainabil Ctr, Champaign, IL 61820 USA
[2] Univ Illinois, Coll Agr Consumer & Environm Sci, Champaign, IL 61820 USA
[3] Univ Illinois, Natl Ctr Supercomp Applicat, Champaign, IL 61820 USA
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
关键词
airborne hyperspectral remote sensing; sustainable agriculture; radiative transfer modeling; machine learning; atmospheric correction; retrieving applications;
D O I
10.1109/IGARSS52108.2023.10283455
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Airborne hyperspectral remote sensing data can provide rich spatial and spectral information at very high resolutions (spatial: <1 m; spectral: <5 nm) to accurately monitor diverse agroecosystem variables such as crop traits, soil properties, and agricultural practices. This high-resolution information is beneficial to agricultural stakeholders for decision-making, timely management, and precision evaluations, which can further advance sustainable agriculture. However, it is challenging to process large-volume airborne hyperspectral data and fulfill the potential of airborne hyperspectral information for sustainable agriculture. To overcome these challenges, we developed an operational framework to process and utilize airborne hyperspectral images using Radiative Transfer Modeling (RTM)-based Machine Learning (RTM-ML) approaches. The framework can accurately and efficiently conduct atmospheric correction of and retrieve agroecosystem variables such as crop nitrogen, cover crop aboveground biomass, and crop residue from airborne hyperspectral data. Extensive validation against ground truth data indicated that the framework can efficiently derive surface reflectance from airborne raw data with mean absolute errors<0.03 and cosine similarities>0.99; and reliably quantify crop nitrogen, cover crop aboveground biomass, and crop residue with an R-2 of 0.85, 0.72, and 0.82, respectively. Our framework demonstrated strong capabilities in processing and utilizing airborne hyperspectral data for sustainable agriculture.
引用
收藏
页码:1269 / 1272
页数:4
相关论文
共 50 条
[31]   Application of Machine Learning for Disease Detection Tasks in Olive Trees Using Hyperspectral Data [J].
Navrozidis, Ioannis ;
Pantazi, Xanthoula Eirini ;
Lagopodi, Anastasia ;
Bochtis, Dionysios ;
Alexandridis, Thomas K. .
REMOTE SENSING, 2023, 15 (24)
[32]   Machine learning as a tool to predict potassium concentration in soybean leaf using hyperspectral data [J].
Renato Herrig Furlanetto ;
Luís Guilherme Teixeira Crusiol ;
João Vitor Ferreira Gonçalves ;
Marcos Rafael Nanni ;
Adilson de Oliveira Junior ;
Fábio Alvares de Oliveira ;
Rubson Natal Ribeiro Sibaldelli .
Precision Agriculture, 2023, 24 :2264-2292
[33]   Comparing UAV-Based Hyperspectral and Satellite-Based Multispectral Data for Soil Moisture Estimation Using Machine Learning [J].
Shokati, Hadi ;
Mashal, Mahmoud ;
Noroozi, Aliakbar ;
Mirzaei, Saham ;
Mohammadi-Doqozloo, Zahra ;
Nabiollahi, Kamal ;
Taghizadeh-Mehrjardi, Ruhollah ;
Khosravani, Pegah ;
Adhikari, Rabindra ;
Hu, Ling ;
Scholten, Thomas .
WATER, 2025, 17 (11)
[34]   Forest biomass estimation from airborne LiDAR data using machine learning approaches [J].
Gleason, Colin J. ;
Im, Jungho .
REMOTE SENSING OF ENVIRONMENT, 2012, 125 :80-91
[35]   Data processing pipeline for cardiogenic shock prediction using machine learning [J].
Jajcay, Nikola ;
Bezak, Branislav ;
Segev, Amitai ;
Matetzky, Shlomi ;
Jankova, Jana ;
Spartalis, Michael ;
El Tahlawi, Mohammad ;
Guerra, Federico ;
Friebel, Julian ;
Thevathasan, Tharusan ;
Berta, Imrich ;
Poelzl, Leo ;
Naegele, Felix ;
Pogran, Edita ;
Cader, F. Aaysha ;
Jarakovic, Milana ;
Gollmann-Tepekoeylue, Can ;
Kollarova, Marta ;
Petrikova, Katarina ;
Tica, Otilia ;
Krychtiuk, Konstantin A. ;
Tavazzi, Guido ;
Skurk, Carsten ;
Huber, Kurt ;
Boehm, Allan .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2023, 10
[36]   Astronomical big data processing using machine learning: A comprehensive review [J].
Sen, Snigdha ;
Agarwal, Sonali ;
Chakraborty, Pavan ;
Singh, Krishna Pratap .
EXPERIMENTAL ASTRONOMY, 2022, 53 (01) :1-43
[37]   Astronomical big data processing using machine learning: A comprehensive review [J].
Snigdha Sen ;
Sonali Agarwal ;
Pavan Chakraborty ;
Krishna Pratap Singh .
Experimental Astronomy, 2022, 53 :1-43
[38]   Using soil library hyperspectral reflectance and machine learning to predict soil organic carbon: Assessing potential of airborne and spaceborne optical soil sensing [J].
Wang, Sheng ;
Guan, Kaiyu ;
Zhang, Chenhui ;
Lee, DoKyoung ;
Margenot, Andrew J. ;
Ge, Yufeng ;
Peng, Jian ;
Zhou, Wang ;
Zhou, Qu ;
Huang, Yizhi .
REMOTE SENSING OF ENVIRONMENT, 2022, 271
[39]   AI Quality Engineering for Machine Learning Based IoT Data Processing [J].
Azimi, Shelernaz ;
Pahl, Claus .
CLOUD COMPUTING AND SERVICES SCIENCE, CLOSER 2021, 2022, 1607 :69-87
[40]   Machine Learning Approaches for Estimating Forest Stand Height Using Plot-Based Observations and Airborne LiDAR Data [J].
Lee, Junghee ;
Im, Jungho ;
Kim, Kyungmin ;
Quackenbush, Lindi J. .
FORESTS, 2018, 9 (05)