ADVANCING AIRBORNE HYPERSPECTRAL DATA PROCESSING AND APPLICATIONS FOR SUSTAINABLE AGRICULTURE USING RTM-BASED MACHINE LEARNING

被引:3
作者
Zhou, Qu [1 ,2 ]
Wang, Sheng [1 ,2 ]
Guan, Kaiyu [1 ,2 ,3 ]
机构
[1] Univ Illinois, Inst Sustainabil Energy & Environm, Agroecosyst Sustainabil Ctr, Champaign, IL 61820 USA
[2] Univ Illinois, Coll Agr Consumer & Environm Sci, Champaign, IL 61820 USA
[3] Univ Illinois, Natl Ctr Supercomp Applicat, Champaign, IL 61820 USA
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
关键词
airborne hyperspectral remote sensing; sustainable agriculture; radiative transfer modeling; machine learning; atmospheric correction; retrieving applications;
D O I
10.1109/IGARSS52108.2023.10283455
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Airborne hyperspectral remote sensing data can provide rich spatial and spectral information at very high resolutions (spatial: <1 m; spectral: <5 nm) to accurately monitor diverse agroecosystem variables such as crop traits, soil properties, and agricultural practices. This high-resolution information is beneficial to agricultural stakeholders for decision-making, timely management, and precision evaluations, which can further advance sustainable agriculture. However, it is challenging to process large-volume airborne hyperspectral data and fulfill the potential of airborne hyperspectral information for sustainable agriculture. To overcome these challenges, we developed an operational framework to process and utilize airborne hyperspectral images using Radiative Transfer Modeling (RTM)-based Machine Learning (RTM-ML) approaches. The framework can accurately and efficiently conduct atmospheric correction of and retrieve agroecosystem variables such as crop nitrogen, cover crop aboveground biomass, and crop residue from airborne hyperspectral data. Extensive validation against ground truth data indicated that the framework can efficiently derive surface reflectance from airborne raw data with mean absolute errors<0.03 and cosine similarities>0.99; and reliably quantify crop nitrogen, cover crop aboveground biomass, and crop residue with an R-2 of 0.85, 0.72, and 0.82, respectively. Our framework demonstrated strong capabilities in processing and utilizing airborne hyperspectral data for sustainable agriculture.
引用
收藏
页码:1269 / 1272
页数:4
相关论文
共 50 条
  • [21] Specifics of Data Collection and Data Processing during Formation of RailVista Dataset for Machine Learning- and Deep Learning-Based Applications
    Abisheva, Gulsipat
    Goranin, Nikolaj
    Razakhova, Bibigul
    Aidynov, Tolegen
    Satybaldina, Dina
    SENSORS, 2024, 24 (16)
  • [22] Using machine learning to optimize parallelism in big data applications
    Brandon Hernandez, Alvaro
    Perez, Maria S.
    Gupta, Smrati
    Muntes-Mulero, Victor
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 86 : 1076 - 1092
  • [23] Tension in big data using machine learning: Analysis and applications
    Wang, Huamao
    Yao, Yumei
    Salhi, Said
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2020, 158
  • [24] Detecting Xylella fastidiosa in a machine learning framework using Vcmax and leaf biochemistry quantified with airborne hyperspectral imagery
    Camino, C.
    Arano, K.
    Berni, J. A.
    Dierkes, H.
    Trapero-Casas, J. L.
    Leon-Ropero, G.
    Montes-Borrego, M.
    Roman-Ecija, M.
    Velasco-Amo, M. P.
    Landa, B. B.
    Navas-Cortes, J. A.
    Beck, P. S. A.
    REMOTE SENSING OF ENVIRONMENT, 2022, 282
  • [25] Machine learning for cyanobacteria mapping on tropical urban reservoirs using PRISMA hyperspectral data
    Begliomini, Felipe N.
    Barbosa, Claudio C. F.
    Martins, Vitor S.
    Novo, Evlyn M. L. M.
    Paulino, Rejane S.
    Maciel, Daniel A.
    Lima, Thainara M. A.
    O'Shea, Ryan E.
    Pahlevan, Nima
    Lamparelli, Marta C.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 204 : 378 - 396
  • [26] Machine learning as a tool to predict potassium concentration in soybean leaf using hyperspectral data
    Furlanetto, Renato Herrig
    Crusiol, Luis Guilherme Teixeira
    Goncalves, Joao Vitor Ferreira
    Nanni, Marcos Rafael
    de Oliveira Junior, Adilson
    de Oliveira, Fabio Alvares
    Sibaldelli, Rubson Natal Ribeiro
    PRECISION AGRICULTURE, 2023, 24 (06) : 2264 - 2292
  • [27] Application of Machine Learning for Disease Detection Tasks in Olive Trees Using Hyperspectral Data
    Navrozidis, Ioannis
    Pantazi, Xanthoula Eirini
    Lagopodi, Anastasia
    Bochtis, Dionysios
    Alexandridis, Thomas K.
    REMOTE SENSING, 2023, 15 (24)
  • [28] Machine learning as a tool to predict potassium concentration in soybean leaf using hyperspectral data
    Renato Herrig Furlanetto
    Luís Guilherme Teixeira Crusiol
    João Vitor Ferreira Gonçalves
    Marcos Rafael Nanni
    Adilson de Oliveira Junior
    Fábio Alvares de Oliveira
    Rubson Natal Ribeiro Sibaldelli
    Precision Agriculture, 2023, 24 : 2264 - 2292
  • [29] Forest biomass estimation from airborne LiDAR data using machine learning approaches
    Gleason, Colin J.
    Im, Jungho
    REMOTE SENSING OF ENVIRONMENT, 2012, 125 : 80 - 91
  • [30] Data processing pipeline for cardiogenic shock prediction using machine learning
    Jajcay, Nikola
    Bezak, Branislav
    Segev, Amitai
    Matetzky, Shlomi
    Jankova, Jana
    Spartalis, Michael
    El Tahlawi, Mohammad
    Guerra, Federico
    Friebel, Julian
    Thevathasan, Tharusan
    Berta, Imrich
    Poelzl, Leo
    Naegele, Felix
    Pogran, Edita
    Cader, F. Aaysha
    Jarakovic, Milana
    Gollmann-Tepekoeylue, Can
    Kollarova, Marta
    Petrikova, Katarina
    Tica, Otilia
    Krychtiuk, Konstantin A.
    Tavazzi, Guido
    Skurk, Carsten
    Huber, Kurt
    Boehm, Allan
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2023, 10