The Ultrametric Gromov-Wasserstein Distance

被引:3
作者
Memoli, Facundo [1 ]
Munk, Axel [2 ]
Wan, Zhengchao [3 ]
Weitkamp, Christoph [2 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Univ Gottingen, Inst Math Stochast, Gottingen, Germany
[3] Univ Calif San Diego, Halicioglu Data Sci Inst, La Jolla, CA USA
关键词
Ultrametric space; Gromov-Hausdorff distance; Gromov-Wasserstein distance; Optimal transport; METRIC-SPACES; GEOMETRY; REPRESENTATION; SIMILARITY; ALIGNMENT; OBJECTS;
D O I
10.1007/s00454-023-00583-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate compact ultrametric measure spaces which form a subset U(w )of the collection of all metric measure spaces M-w. In analogy with the notion of the ultrametric Gromov-Hausdorff distance on the collection of ultrametric spaces , we define ultrametric versions of two metrics on U-w, namely of Sturm's Gromov-Wasserstein distance of order p and of the Gromov-Wasserstein distance of order p. We study the basic topological and geometric properties of these distances as well as their relation and derive for p = infinity a polynomial time algorithm for their calculation. Further, several lower bounds for both distances are derived and some of our results are generalized to the case of finite ultra-dissimilarity spaces. Finally, we study the relation between the Gromov-Wasserstein distance and its ultrametric version (as well as the relation between the corresponding lower bounds) in simulations and apply our findings for phylogenetic tree shape comparisons.
引用
收藏
页码:1378 / 1450
页数:73
相关论文
共 50 条
[41]   On parameter estimation with the Wasserstein distance [J].
Bernton, Espen ;
Jacob, Pierre E. ;
Gerber, Mathieu ;
Robert, Christian P. .
INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (04) :657-676
[42]   Hydrological objective functions and ensemble averaging with the Wasserstein distance [J].
Magyar, Jared C. ;
Sambridge, Malcolm .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2023, 27 (05) :991-1010
[43]   Quantized Gromov-Hausdorff distance [J].
Wu, Wei .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (01) :58-98
[44]   Wasserstein distance, Fourier series and applications [J].
Steinerberger, Stefan .
MONATSHEFTE FUR MATHEMATIK, 2021, 194 (02) :305-338
[45]   On the Bures-Wasserstein distance between positive definite matrices [J].
Bhatia, Rajendra ;
Jain, Tanvi ;
Lim, Yongdo .
EXPOSITIONES MATHEMATICAE, 2019, 37 (02) :165-191
[46]   SULCAL PATTERN MATCHING WITH THE WASSERSTEIN DISTANCE [J].
Chen, Zijian ;
Das, Soumya ;
Chung, Moo K. .
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
[47]   Estimation of smooth densities in Wasserstein distance [J].
Weed, Jonathan ;
Berthet, Quentin .
CONFERENCE ON LEARNING THEORY, VOL 99, 2019, 99
[48]   Explainable AI Using the Wasserstein Distance [J].
Chaudhury, Shion Samadder ;
Sadhukhan, Payel ;
Sengupta, Kausik .
IEEE ACCESS, 2024, 12 :18087-18102
[49]   On p-Metric Spaces and the p-Gromov-Hausdorff Distance [J].
Memoli, Facundo ;
Wan, Zhengchao .
P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2022, 14 (03) :173-223
[50]   Approximate Bayesian computation with the Wasserstein distance [J].
Bernton, Espen ;
Jacob, Pierre E. ;
Gerber, Mathieu ;
Robert, Christian P. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2019, 81 (02) :235-269