The Ultrametric Gromov-Wasserstein Distance

被引:3
作者
Memoli, Facundo [1 ]
Munk, Axel [2 ]
Wan, Zhengchao [3 ]
Weitkamp, Christoph [2 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Univ Gottingen, Inst Math Stochast, Gottingen, Germany
[3] Univ Calif San Diego, Halicioglu Data Sci Inst, La Jolla, CA USA
关键词
Ultrametric space; Gromov-Hausdorff distance; Gromov-Wasserstein distance; Optimal transport; METRIC-SPACES; GEOMETRY; REPRESENTATION; SIMILARITY; ALIGNMENT; OBJECTS;
D O I
10.1007/s00454-023-00583-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate compact ultrametric measure spaces which form a subset U(w )of the collection of all metric measure spaces M-w. In analogy with the notion of the ultrametric Gromov-Hausdorff distance on the collection of ultrametric spaces , we define ultrametric versions of two metrics on U-w, namely of Sturm's Gromov-Wasserstein distance of order p and of the Gromov-Wasserstein distance of order p. We study the basic topological and geometric properties of these distances as well as their relation and derive for p = infinity a polynomial time algorithm for their calculation. Further, several lower bounds for both distances are derived and some of our results are generalized to the case of finite ultra-dissimilarity spaces. Finally, we study the relation between the Gromov-Wasserstein distance and its ultrametric version (as well as the relation between the corresponding lower bounds) in simulations and apply our findings for phylogenetic tree shape comparisons.
引用
收藏
页码:1378 / 1450
页数:73
相关论文
共 50 条
[21]   Tangential Fixpoint Iterations for Gromov-Wasserstein Barycenters\ast [J].
Beier, Florian ;
Beinert, Robert .
SIAM JOURNAL ON IMAGING SCIENCES, 2025, 18 (02) :1058-1100
[22]   Gromov-Wasserstein Multi-modal Alignment and Clustering [J].
Gong, Fengjiao ;
Nie, Yuzhou ;
Xu, Hongteng .
PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, :603-613
[23]   Generalized Spectral Clustering via Gromov-Wasserstein Learning [J].
Chowdhury, Samir ;
Needham, Tom .
24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130 :712-+
[24]   Minimum Energy Density Steering of Linear Systems With Gromov-Wasserstein Terminal Cost [J].
Morimoto, Kohei ;
Kashima, Kenji .
IEEE CONTROL SYSTEMS LETTERS, 2024, 8 :586-591
[25]   GROMOV-WASSERSTEIN DISTANCES: ENTROPIC REGULARIZATION, DUALITY AND SAMPLE COMPLEXITY [J].
Zhang, Zhengxin ;
Goldfeld, Ziv ;
Mroueh, Youssef ;
Sriperumbudur, Bharath K. .
ANNALS OF STATISTICS, 2024, 52 (04) :1616-1645
[26]   On Assignment Problems Related to Gromov-Wasserstein Distances on the Real Line [J].
Beinert, Robert ;
Heiss, Cosmas ;
Steidl, Gabriele .
SIAM JOURNAL ON IMAGING SCIENCES, 2023, 16 (02) :1028-1032
[27]   Grownbb: Gromov-Wasserstein learning of neural best buddies for cross-domain correspondence [J].
Tang, Ruolan ;
Wang, Weiwei ;
Han, Yu ;
Feng, Xiangchu .
VISUAL COMPUTER, 2024, 40 (12) :8517-8530
[28]   Gromov-Wasserstein Guided Representation Learning for Cross-Domain Recommendation [J].
Li, Xinhang ;
Qiu, Zhaopeng ;
Zhao, Xiangyu ;
Wang, Zihao ;
Zhang, Yong ;
Xing, Chunxiao ;
Wu, Xian .
PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, :1199-1208
[29]   The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation [J].
Sejourne, Thibault ;
Vialard, Francois-Xavier ;
Peyre, Gabriel .
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
[30]   Sampled Gromov Wasserstein [J].
Tanguy Kerdoncuff ;
Rémi Emonet ;
Marc Sebban .
Machine Learning, 2021, 110 :2151-2186