Intrinsic sub-Laplacian for hypersurface in a contact sub-Riemannian manifold

被引:1
作者
Barilari, Davide [1 ]
Habermann, Karen [2 ]
机构
[1] Univ Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, Padua, Italy
[2] Univ Warwick, Dept Stat, Coventry CV4 7AL, England
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2024年 / 31卷 / 01期
关键词
Sub-Riemannian geometry; Contact manifold; Hypersurfaces; Model spaces; Sub-Laplacian; Radial process; Pfaffian equations; SURFACES;
D O I
10.1007/s00030-023-00891-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct and study the intrinsic sub-Laplacian, defined outside the set of characteristic points, for a smooth hypersurface embedded in a contact sub-Riemannian manifold. We prove that, away from characteristic points, the intrinsic sub-Laplacian arises as the limit of Laplace-Beltrami operators built by means of Riemannian approximations to the sub-Riemannian structure using the Reeb vector field. We carefully analyse three families of model cases for this setting obtained by considering canonical hypersurfaces embedded in model spaces for contact sub-Riemannian manifolds. In these model cases, we show that the intrinsic sub-Laplacian is stochastically complete and in particular, that the stochastic process induced by the intrinsic sub-Laplacian almost surely does not hit characteristic points.
引用
收藏
页数:31
相关论文
共 27 条
  • [1] Agrachev A., 2019, Camb. Stud. Adv. Math., DOI DOI 10.1017/9781108677325
  • [2] Intrinsic curvature of curves and surfaces and a Gauss-Bonnet theorem in the Heisenberg group (vol 287, pg 1, 2017)
    Balogh, Zoltan M.
    Tyson, Jeremy T.
    Vecchi, Eugenio
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (1-2) : 875 - 876
  • [3] Intrinsic curvature of curves and surfaces and a Gauss-Bonnet theorem in the Heisenberg group
    Balogh, Zoltan M.
    Tyson, Jeremy T.
    Vecchi, Eugenio
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2017, 287 (1-2) : 1 - 38
  • [4] ON THE INDUCED GEOMETRY ON SURFACES IN 3D CONTACT SUB-RIEMANNIAN MANIFOLDS
    Barilari, Davide
    Boscain, Ugo
    Cannarsa, Daniele
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2022, 28
  • [5] Stochastic processes on surfaces in three-dimensional contact sub-Riemannian manifolds
    Barilari, Davide
    Boscain, Ugo
    Cannarsa, Daniele
    Habermann, Karen
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (03): : 1388 - 1410
  • [6] Radial processes for sub-Riemannian Brownian motions and applications
    Baudoin, Fabrice
    Grong, Erlend
    Kuwada, Kazumasa
    Neel, Robert
    Thalmaier, Anton
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 : 1 - 7
  • [7] Blair DE, 2010, PROG MATH, V203, P1, DOI 10.1007/978-0-8176-4959-3
  • [8] Intrinsic random walks and sub-Laplacians in sub-Riemannian geometry
    Boscain, Ugo
    Neel, Robert
    Rizzi, Luca
    [J]. ADVANCES IN MATHEMATICS, 2017, 314 : 124 - 184
  • [9] Capogna L., 2007, PROGR MATH, V259
  • [10] Sub-Lorentzian geometry on anti-de Sitter space
    Chang, Der-Chen
    Markina, Irina
    Vasil'ev, Alexander
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (01): : 82 - 110