Intrinsic sub-Laplacian for hypersurface in a contact sub-Riemannian manifold

被引:1
作者
Barilari, Davide [1 ]
Habermann, Karen [2 ]
机构
[1] Univ Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, Padua, Italy
[2] Univ Warwick, Dept Stat, Coventry CV4 7AL, England
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2024年 / 31卷 / 01期
关键词
Sub-Riemannian geometry; Contact manifold; Hypersurfaces; Model spaces; Sub-Laplacian; Radial process; Pfaffian equations; SURFACES;
D O I
10.1007/s00030-023-00891-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct and study the intrinsic sub-Laplacian, defined outside the set of characteristic points, for a smooth hypersurface embedded in a contact sub-Riemannian manifold. We prove that, away from characteristic points, the intrinsic sub-Laplacian arises as the limit of Laplace-Beltrami operators built by means of Riemannian approximations to the sub-Riemannian structure using the Reeb vector field. We carefully analyse three families of model cases for this setting obtained by considering canonical hypersurfaces embedded in model spaces for contact sub-Riemannian manifolds. In these model cases, we show that the intrinsic sub-Laplacian is stochastically complete and in particular, that the stochastic process induced by the intrinsic sub-Laplacian almost surely does not hit characteristic points.
引用
收藏
页数:31
相关论文
共 27 条
[1]  
Agrachev A., 2019, Cambridge Studies in Advanced Mathematics, DOI DOI 10.1017/9781108677325
[2]   Intrinsic curvature of curves and surfaces and a Gauss-Bonnet theorem in the Heisenberg group (vol 287, pg 1, 2017) [J].
Balogh, Zoltan M. ;
Tyson, Jeremy T. ;
Vecchi, Eugenio .
MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (1-2) :875-876
[3]   Intrinsic curvature of curves and surfaces and a Gauss-Bonnet theorem in the Heisenberg group [J].
Balogh, Zoltan M. ;
Tyson, Jeremy T. ;
Vecchi, Eugenio .
MATHEMATISCHE ZEITSCHRIFT, 2017, 287 (1-2) :1-38
[4]   ON THE INDUCED GEOMETRY ON SURFACES IN 3D CONTACT SUB-RIEMANNIAN MANIFOLDS [J].
Barilari, Davide ;
Boscain, Ugo ;
Cannarsa, Daniele .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2022, 28
[5]   Stochastic processes on surfaces in three-dimensional contact sub-Riemannian manifolds [J].
Barilari, Davide ;
Boscain, Ugo ;
Cannarsa, Daniele ;
Habermann, Karen .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (03) :1388-1410
[6]   Radial processes for sub-Riemannian Brownian motions and applications [J].
Baudoin, Fabrice ;
Grong, Erlend ;
Kuwada, Kazumasa ;
Neel, Robert ;
Thalmaier, Anton .
ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 :1-7
[7]  
Blair DE, 2010, PROG MATH, V203, P1, DOI 10.1007/978-0-8176-4959-3
[8]   Intrinsic random walks and sub-Laplacians in sub-Riemannian geometry [J].
Boscain, Ugo ;
Neel, Robert ;
Rizzi, Luca .
ADVANCES IN MATHEMATICS, 2017, 314 :124-184
[9]  
Capogna L., 2007, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, P16
[10]   Sub-Lorentzian geometry on anti-de Sitter space [J].
Chang, Der-Chen ;
Markina, Irina ;
Vasil'ev, Alexander .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (01) :82-110