Chaotic dynamics of an extended Duffing-van der Pol system with a non-smooth perturbation and parametric excitation

被引:6
作者
Hu, Sengen [1 ]
Zhou, Liangqiang [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 210016, Peoples R China
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2023年 / 78卷 / 11期
关键词
extended Duffing-van der pol system; Melnikov's chaos; non-smooth perturbation; parametric excitation; stationary chaos; BIFURCATIONS; SUBJECT;
D O I
10.1515/zna-2023-0117
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Chaotic dynamics of a fifth-order extended Duffing-van der Pol system with a non-smooth periodic perturbation and parametric excitation are investigated both analytically and numerically in this paper. With the Fourier series, the system is expanded to the equivalent smooth system. The Melnikov perturbation method is used to derive the horseshoe chaos condition in the cases of homoclinic and heteroclinic intersections. The chaotic features for different system parameters are investigated in detail. The monotonic variation of the coefficients of parametric excitation and non-smooth periodic disturbance is found. With numerical methods, we validate the analytical results obtained by Melnikov's method. The impact of initial conditions is carefully analyzed by basins of attraction and the effect of non-smooth periodic disturbance on the basin of attraction is also investigated. Besides, the effect of different parameters on the bifurcation pathway into chaotic attractors is examined.
引用
收藏
页码:1015 / 1030
页数:16
相关论文
共 25 条
[1]   On the development of a nonlinear time-domain numerical method for describing vortex-induced vibration and wake interference of two cylinders using experimental results [J].
Armin, Milad ;
Day, Sandy ;
Karimirad, Madjid ;
Khorasanchi, Mahdi .
NONLINEAR DYNAMICS, 2021, 104 (04) :3517-3531
[2]   Estimating the region of attraction based on a polynomial lyapunov function [J].
Awrejcewicz, Jan ;
Bilichenko, Dmytro ;
Cheib, AkramKhalil ;
Losyeva, Nataliya ;
Puzyrov, Volodymyr .
APPLIED MATHEMATICAL MODELLING, 2021, 90 :1143-1152
[3]   Zero-Hopf bifurcation in the general Van der Pol-Duffing equation [J].
Candido, Murilo R. ;
Valls, Claudia .
JOURNAL OF GEOMETRY AND PHYSICS, 2022, 179
[4]   The discontinuous limit case of an archetypal oscillator with a constant excitation and van der Pol damping [J].
Chen, Hebai ;
Tang, Yilei ;
Wang, Zhaoxia .
PHYSICA D-NONLINEAR PHENOMENA, 2022, 438
[5]   The analysis of solutions behaviour of Van der Pol Duffing equation describing local brain hemodynamics [J].
Cherevko, A. A. ;
Bord, E. E. ;
Khe, A. K. ;
Panarin, V. A. ;
Orlov, K. J. .
ALL-RUSSIAN CONFERENCE WITH INTERNATIONAL PARTICIPATION MODERN PROBLEMS OF CONTINUUM MECHANICS AND EXPLOSION PHYSICS DEDICATED TO THE 60TH ANNIVERSARY OF LAVRENTYEV INSTITUTE OF HYDRODYNAMICS SB RAS, 2017, 894
[6]   Switching between periodic orbits in impact oscillator by time-delayed feedback methods [J].
Costa, Dimitri ;
Vaziri, Vahid ;
Pavlovskaia, Ekaterina ;
Savi, Marcelo A. ;
Wiercigroch, Marian .
PHYSICA D-NONLINEAR PHENOMENA, 2023, 443
[7]   Analytic approximate solutions of the cubic-quintic Duffing-van der Pol equation with two-external periodic forcing terms: Stability analysis [J].
Ghaleb, A. F. ;
Abou-Dina, M. S. ;
Moatimid, G. M. ;
Zekry, M. H. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 180 :129-151
[8]   Complexity and multistability of a nonsmooth atopic dermatitis system [J].
Kang, Yoseb ;
Lee, Eun Hye ;
Kim, Sang-Hyun ;
Jang, Yong Hyun ;
Do, Younghae .
CHAOS SOLITONS & FRACTALS, 2021, 153
[9]   Stochastic bifurcations in a vibro-impact Duffing-Van der Pol oscillator [J].
Kumar, Pankaj ;
Narayanan, S. ;
Gupta, Sayan .
NONLINEAR DYNAMICS, 2016, 85 (01) :439-452
[10]   Homoclinic and heteroclinic bifurcations in the non-linear dynamics of a beam resting on an elastic substrate [J].
Lenci, S ;
Menditto, G ;
Tarantino, AM .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1999, 34 (04) :615-632