Self-supervised pseudo-colorizing of masked cells

被引:0
|
作者
Wagner, Royden [1 ]
Lopez, Carlos Fernandez [1 ]
Stiller, Christoph [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Karlsruhe, BW, Germany
来源
PLOS ONE | 2023年 / 18卷 / 08期
关键词
D O I
10.1371/journal.pone.0290561
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Self-supervised learning, which is strikingly referred to as the dark matter of intelligence, is gaining more attention in biomedical applications of deep learning. In this work, we introduce a novel self-supervision objective for the analysis of cells in biomedical microscopy images. We propose training deep learning models to pseudo-colorize masked cells. We use a physics-informed pseudo-spectral colormap that is well suited for colorizing cell topology. Our experiments reveal that approximating semantic segmentation by pseudo-colorization is beneficial for subsequent fine-tuning on cell detection. Inspired by the recent success of masked image modeling, we additionally mask out cell parts and train to reconstruct these parts to further enrich the learned representations. We compare our pre-training method with self-supervised frameworks including contrastive learning (SimCLR), masked autoencoders (MAEs), and edge-based self-supervision. We build upon our previous work and train hybrid models for cell detection, which contain both convolutional and vision transformer modules. Our pre-training method can outperform SimCLR, MAE-like masked image modeling, and edge-based self-supervision when pre-training on a diverse set of six fluorescence microscopy datasets. Code is available at: https://github.com/roydenwa/pseudo-colorize-masked-cells.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] GraphMAE: Self-Supervised Masked Graph Autoencoders
    Hou, Zhenyu
    Liu, Xiao
    Cen, Yukuo
    Dong, Yuxiao
    Yang, Hongxia
    Wang, Chunjie
    Tang, Jie
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 594 - 604
  • [2] Masked Discrimination for Self-supervised Learning on Point Clouds
    Liu, Haotian
    Cai, Mu
    Lee, Yong Jae
    COMPUTER VISION - ECCV 2022, PT II, 2022, 13662 : 657 - 675
  • [3] A Masked Self-Supervised Pretraining Method for Face Parsing
    Li, Zhuang
    Cao, Leilei
    Wang, Hongbin
    Xu, Lihong
    MATHEMATICS, 2022, 10 (12)
  • [4] MST: Masked Self-Supervised Transformer for Visual Representation
    Li, Zhaowen
    Chen, Zhiyang
    Yang, Fan
    Li, Wei
    Zhu, Yousong
    Zhao, Chaoyang
    Deng, Rui
    Wu, Liwei
    Zhao, Rui
    Tang, Ming
    Wang, Jinqiao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [5] A Survey on Masked Autoencoder for Visual Self-supervised Learning
    Zhang, Chaoning
    Zhang, Chenshuang
    Song, Junha
    Yi, John Seon Keun
    Kweon, In So
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 6805 - 6813
  • [6] Contrastive Masked Autoencoders for Self-Supervised Video Hashing
    Wang, Yuting
    Wang, Jinpeng
    Chen, Bin
    Zeng, Ziyun
    Xia, Shu-Tao
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 3, 2023, : 2733 - 2741
  • [7] Masked Autoencoders for Point Cloud Self-supervised Learning
    Pang, Yatian
    Wang, Wenxiao
    Tay, Francis E. H.
    Liu, Wei
    Tian, Yonghong
    Yuan, Li
    COMPUTER VISION - ECCV 2022, PT II, 2022, 13662 : 604 - 621
  • [8] Self-Supervised Masked Convolutional Transformer Block for Anomaly Detection
    Madan, Neelu
    Ristea, Nicolae-Catalin
    Ionescu, Radu Tudor
    Nasrollahi, Kamal
    Khan, Fahad Shahbaz
    Moeslund, Thomas B.
    Shah, Mubarak
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (01) : 525 - 542
  • [9] Universal Sound Separation with Self-Supervised Audio Masked Autoencoder
    Zhao, Junqi
    Liu, Xubo
    Zhao, Jinzheng
    Yuan, Yi
    Kong, Qiuqiang
    Plumbley, Mark D.
    Wang, Wenwu
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 1 - 5
  • [10] ProteinMAE: masked autoencoder for protein surface self-supervised learning
    Yuan, Mingzhi
    Shen, Ao
    Fu, Kexue
    Guan, Jiaming
    Ma, Yingfan
    Qiao, Qin
    Wang, Manning
    BIOINFORMATICS, 2023, 39 (12)