Incomplete Multi-View Clustering With Complete View Guidance

被引:4
|
作者
Chen, Zhikui [1 ,2 ]
Li, Yue [1 ,2 ]
Lou, Kai [1 ,2 ]
Zhao, Liang [1 ,2 ]
机构
[1] Dalian Univ Technol, Sch Software Technol, Dalian 116620, Peoples R China
[2] Dalian Univ Technol, Serv Software Liaoning Prov, Key Lab Ubiquitous Network, Dalian 116620, Peoples R China
基金
中国国家自然科学基金;
关键词
Data models; Mathematical models; Transformers; Brain modeling; Training; Software; Signal processing; Incomplete multi-view clustering; distillation learning; contrastive learning;
D O I
10.1109/LSP.2023.3302234
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, multi-view clustering has gained widespread attention in signal processing because multi-view data contains more information than a single view. However, multi-view data is often incomplete due to missing data in one or more random views. Therefore, several methods have been proposed for incomplete multi-view clustering to learn features that contain consensus information for clustering incomplete multi-view data (IMD). However, there is a part of the IMD that is not missing in any view, and most previous methods have not utilized this part to guide the process of learning consensus information. To address this issue, we design a knowledge distillation framework for incomplete multi-view clustering and propose an incomplete multi-view clustering with complete view guidance (IMC-CVG). We first train a robust teacher model with contrastive learning loss on the complete part of IMD to learn consensus features containing multi-view information. Then, we train a student model on all the IMD, where we mask partial views of the complete data to simulate missing data, and utilize the teacher model to guide the student model to learn consensus features that contain as much multi-view information as possible. Experiments show that our proposed method outperforms all the compared state-of-the-art methods.
引用
收藏
页码:1247 / 1251
页数:5
相关论文
共 50 条
  • [41] An incomplete multi-view clustering approach using subspace alignment constraint
    Niu, Xueying
    Zhao, Xiaojie
    Hu, Lihua
    Zhang, Jifu
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, : 2487 - 2502
  • [42] Anchor-based sparse subspace incomplete multi-view clustering
    Li, Ao
    Feng, Cong
    Wang, Zhuo
    Sun, Yuegong
    Wang, Zizhen
    Sun, Ling
    WIRELESS NETWORKS, 2024, 30 (06) : 5559 - 5570
  • [43] Dual-dimensional contrastive learning for incomplete multi-view clustering
    Zhu, Zhengzhong
    Pu, Chujun
    Zhang, Xuejie
    Wang, Jin
    Zhou, Xiaobing
    NEUROCOMPUTING, 2025, 615
  • [44] Adaptive Weighted Graph Fusion Incomplete Multi-View Subspace Clustering
    Zhang, Pei
    Wang, Siwei
    Hu, Jingtao
    Cheng, Zhen
    Guo, Xifeng
    Zhu, En
    Cai, Zhiping
    SENSORS, 2020, 20 (20) : 1 - 18
  • [45] Label completion based concept factorization for incomplete multi-view clustering
    Yang, Beihua
    Song, Peng
    Cheng, Yuanbo
    Liu, Zhaowei
    Yu, Yanwei
    KNOWLEDGE-BASED SYSTEMS, 2025, 310
  • [46] Two-step graph propagation for incomplete multi-view clustering
    Zhang, Xiao
    Pu, Xinyu
    Che, Hangjun
    Liu, Cheng
    Qin, Jun
    NEURAL NETWORKS, 2025, 183
  • [47] Tensorized topological graph learning for generalized incomplete multi-view clustering
    Zhang, Zheng
    He, Wen-Jue
    INFORMATION FUSION, 2023, 100
  • [48] INCOMPLETE MULTI-VIEW SUBSPACE CLUSTERING WITH LOW-RANK TENSOR
    Liu, Jianlun
    Teng, Shaohua
    Zhang, Wei
    Fang, Xiaozhao
    Fei, Lunke
    Zhang, Zhuxiu
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3180 - 3184
  • [49] Incomplete multi-view clustering based on information fusion with self-supervised learning
    Cai, Yilong
    Shu, Qianyu
    Zhou, Zhengchun
    Meng, Hua
    INFORMATION FUSION, 2025, 117
  • [50] Learning missing instances in latent space for incomplete multi-view clustering
    Yu, Zhiqi
    Ye, Mao
    Xiao, Siying
    Tian, Liang
    KNOWLEDGE-BASED SYSTEMS, 2022, 250