Influence of Hard Carbon Materials Structure on the Performance of Sodium-Ion Batteries

被引:9
|
作者
Ren, Yifei [2 ,3 ]
Wang, Zhixing [2 ,3 ,4 ]
Wang, Jiexi [2 ,3 ,4 ]
Yan, Guochun [2 ,3 ,4 ]
Li, Xinhai [2 ,3 ,4 ]
Peng, Wenjie [2 ,3 ,4 ]
Guo, Huajun [1 ,2 ,3 ,4 ]
机构
[1] Cent South Univ, Engn Res Ctr Minist Educ Adv Battery Mat, Sch Met & Environm, Changsha 410083, Peoples R China
[2] Cent South Univ, Engn Res Ctr, Minist Educ Adv Battery Mat, Changsha 410083, Peoples R China
[3] Cent South Univ, Sch Met & Environm, Changsha 410083, Peoples R China
[4] Cent South Univ, Hunan Prov Key Lab Nonferrous Value Added Met, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
STORAGE; INSERTION;
D O I
10.1021/acs.energyfuels.3c02406
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Sodium-ion batteries are one of the ideal devices for large-scale energy storage systems, and hard carbon is a promising negative electrode material for sodium-ion batteries. In this paper, we carefully study three commercial hard carbon (HC) materials with different structures and find that the interlayer spacing, defects, particle size, and pore size of the materials have significant impacts on the performance. The materials are used to analyze the sodium storage behaviors in the slope and plateau regions through charge/discharge, CV, and GITT tests. To eliminate the adverse impact of overpotential on the metal sodium electrode in the half-cell system, we use a three-electrode system to measure the capacity of different HCs in the slope and plateau regions. It is found that the sodium storage of the slope region is accompanied by both adsorption and intercalation behaviors. The K-HC with the largest interlayer spacing (0.393 nm) and the largest number of defects (A(D)/A(G) value is 1.30) has the highest sodium storage specific capacity (288.29 mAh.g(-1)) and slope area capacity contribution (107.04 mAh.g(-1)). In addition, the kinetics of different HC materials are studied. The GITT and EIS results indicate that Na+ diffusion is the easiest in A-HC materials, so they exhibit better rate performance. Due to a large number of defects (A(D)/A(G) = 1.30) and large layer spacing (0.393 nm), the K-HC material has the highest capacitance contribution (0.2 mV.s(-1), 47.6%) and sodium storage specific capacity (288.29 mAh.g(-1)).
引用
收藏
页码:14365 / 14374
页数:10
相关论文
共 50 条
  • [21] Nanoengineering of Advanced Carbon Materials for Sodium-Ion Batteries
    Zhao, Shuoqing
    Guo, Ziqi
    Yang, Jian
    Wang, Chengyin
    Sun, Bing
    Wang, Guoxiu
    SMALL, 2021, 17 (48)
  • [22] Graphitic Carbon Materials for Advanced Sodium-Ion Batteries
    Xu, Zheng-Long
    Park, Jooha
    Yoon, Cabin
    Kim, Haegyeom
    Kang, Kisuk
    SMALL METHODS, 2019, 3 (04)
  • [23] Synthesis strategies of hard carbon anodes for sodium-ion batteries
    Yin, Jian
    Zhang, Ye Shui
    Liang, Hanfeng
    Zhang, Wenli
    Zhu, Yunpei
    MATERIALS REPORTS: ENERGY, 2024, 4 (02):
  • [24] Recent Progress in Hard Carbon Anodes for Sodium-Ion Batteries
    Wang, Jiarui
    Xi, Lei
    Peng, Chenxi
    Song, Xin
    Wan, Xuanhong
    Sun, Luyi
    Liu, Meinan
    Liu, Jun
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (08)
  • [25] The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries
    Tan, Suchong
    Yang, Han
    Zhang, Zhen
    Xu, Xiangyu
    Xu, Yuanyuan
    Zhou, Jian
    Zhou, Xinchi
    Pan, Zhengdao
    Rao, Xingyou
    Gu, Yudong
    Wang, Zhoulu
    Wu, Yutong
    Liu, Xiang
    Zhang, Yi
    MOLECULES, 2023, 28 (07):
  • [26] Ultrafast synthesis of hard carbon anodes for sodium-ion batteries
    Zhen, Yichao
    Chen, Yang
    Li, Feng
    Guo, Zhenyu
    Hong, Zhensheng
    Titirici, Maria-Magdalena
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (42)
  • [27] Carbon Anode Materials for Advanced Sodium-Ion Batteries
    Hou, Hongshuai
    Qiu, Xiaoqing
    Wei, Weifeng
    Zhang, Yun
    Ji, Xiaobo
    ADVANCED ENERGY MATERIALS, 2017, 7 (24)
  • [28] A review of hard carbon anodes for rechargeable sodium-ion batteries
    Mu, Bao-yi
    Chi, Chun-lei
    Yang, Xin-hou
    Huangfu, Chao
    Qi, Bin
    Wang, Guan-wen
    Li, Zhi-yuan
    Song, Lei
    Wei, Tong
    Fan, Zhuang-jun
    NEW CARBON MATERIALS, 2024, 39 (05) : 796 - 823
  • [29] A Bifuctional Presodiation Reagent for Hard Carbon Anodes Enhancing Performance of Sodium-Ion Batteries
    Gao, Xiaoyu
    Sun, Yukun
    He, Bowen
    Nuli, Yanna
    Wang, Jiulin
    Yang, Jun
    ACS ENERGY LETTERS, 2024, 9 (03) : 1141 - 1147
  • [30] Expanded biomass-derived hard carbon with ultrastable performance in sodium-ion batteries
    Zhu, Ziyi
    Liang, Feng
    Zhou, Zhongren
    Zeng, Xiaoyuan
    Wang, Ding
    Dong, Peng
    Zhao, Jinbao
    Sun, Shigang
    Zhang, Yingjie
    Li, Xue
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (04) : 1513 - 1522