Uncertainty-aware and dynamically-mixed pseudo-labels for semi-supervised defect segmentation

被引:11
|
作者
Sime, Dejene M. [1 ]
Wang, Guotai [1 ]
Zeng, Zhi [1 ]
Peng, Bei [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Defect segmentation; Semi-supervised learning; Uncertainty estimation; Uncertainty-aware learning; Pseudo-label supervision;
D O I
10.1016/j.compind.2023.103995
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Deep learning-based defect segmentation is one of the important tasks of machine vision in automated inspection. Supervised learning methods have recently achieved remarkable performance on this task. However, the effectiveness of the supervised methods is limited by the scarcity and high cost of pixel-level annotation of training data. Semi-supervised learning methods have been proposed for training deep learning networks using a limited amount of labeled data along with additional unlabeled data for image segmentation. Most of these methods are based on consistency regularization and pseudo labeling, where the predictions on unlabeled samples often come with noise and are unreliable, resulting in poor segmentation performance. To alleviate this problem, we propose uncertainty-aware pseudo labels, which are generated from dynamically mixed predictions of multiple decoders that leverage a shared encoder network. The estimated uncertainty guides the pseudo-label-based supervision and regularizes the training when using the unlabeled samples. In our experiments on four public datasets for defect segmentation, the proposed method outperformed the fully supervised baseline and six state-of-the-art semi-supervised segmentation methods. We also conducted an extensive ablation study to demonstrate the effectiveness of our approach in various settings. The implementation code for this work is available at https://github.com/djene-mengistu/UAPS.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels
    Wang, Yuchao
    Wang, Haochen
    Shen, Yujun
    Fei, Jingjing
    Li, Wei
    Jin, Guoqiang
    Wu, Liwei
    Zhao, Rui
    Le, Xinyi
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 4238 - 4247
  • [2] Uncertainty-aware semi-supervised few shot segmentation
    Kim, Soopil
    Chikontwe, Philip
    An, Sion
    Park, Sang Hyun
    PATTERN RECOGNITION, 2023, 137
  • [3] Uncertainty-aware pseudo-label and consistency for semi-supervised medical image segmentation
    Lu, Liyun
    Yin, Mengxiao
    Fu, Liyao
    Yang, Feng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79
  • [4] Uncertainty-Aware Semi-Supervised Method for Pectoral Muscle Segmentation
    Tang, Yutao
    Guo, Yongze
    Wang, Huayu
    Song, Ting
    Lu, Yao
    BIOENGINEERING-BASEL, 2025, 12 (01):
  • [5] Semi-Supervised Learning of Semantic Correspondence with Pseudo-Labels
    Kim, Jiwon
    Ryoo, Kwangrok
    Seo, Junyoung
    Lee, Gyuseong
    Kim, Daehwan
    Cho, Hansang
    Kim, Seungryong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 19667 - 19677
  • [6] Semi-Supervised Cell Detection with Reliable Pseudo-Labels
    Bai, Tian
    Zhang, Zhenting
    Guo, Shuyu
    Zhao, Chen
    Luo, Xiao
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (10) : 1061 - 1073
  • [7] Semi-Supervised Text Detection With Accurate Pseudo-Labels
    Zhou, Yu
    Xie, Hongtao
    Fang, Shancheng
    Zhang, Yongdong
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1272 - 1276
  • [8] Exploring refined boundaries and accurate pseudo-labels for semi-supervised medical image segmentation
    Ma, Xiaochen
    Li, Yanfeng
    Sun, Jia
    Chen, Houjin
    Ren, Yihan
    Chen, Ziwei
    APPLIED INTELLIGENCE, 2025, 55 (03)
  • [9] Uncertainty-aware representation calibration for semi-supervised medical imaging segmentation
    Wu, Yuanchen
    Li, Xiaoqiang
    Zhou, Yue
    NEUROCOMPUTING, 2024, 595
  • [10] MUNet: Motion uncertainty-aware semi-supervised video object segmentation
    Sun, Jiadai
    Mao, Yuxin
    Dai, Yuchao
    Zhong, Yiran
    Wang, Jianyuan
    PATTERN RECOGNITION, 2023, 138