Uncertainty-aware and dynamically-mixed pseudo-labels for semi-supervised defect segmentation

被引:12
作者
Sime, Dejene M. [1 ]
Wang, Guotai [1 ]
Zeng, Zhi [1 ]
Peng, Bei [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Defect segmentation; Semi-supervised learning; Uncertainty estimation; Uncertainty-aware learning; Pseudo-label supervision;
D O I
10.1016/j.compind.2023.103995
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Deep learning-based defect segmentation is one of the important tasks of machine vision in automated inspection. Supervised learning methods have recently achieved remarkable performance on this task. However, the effectiveness of the supervised methods is limited by the scarcity and high cost of pixel-level annotation of training data. Semi-supervised learning methods have been proposed for training deep learning networks using a limited amount of labeled data along with additional unlabeled data for image segmentation. Most of these methods are based on consistency regularization and pseudo labeling, where the predictions on unlabeled samples often come with noise and are unreliable, resulting in poor segmentation performance. To alleviate this problem, we propose uncertainty-aware pseudo labels, which are generated from dynamically mixed predictions of multiple decoders that leverage a shared encoder network. The estimated uncertainty guides the pseudo-label-based supervision and regularizes the training when using the unlabeled samples. In our experiments on four public datasets for defect segmentation, the proposed method outperformed the fully supervised baseline and six state-of-the-art semi-supervised segmentation methods. We also conducted an extensive ablation study to demonstrate the effectiveness of our approach in various settings. The implementation code for this work is available at https://github.com/djene-mengistu/UAPS.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Uncertainty-aware semi-supervised few shot segmentation
    Kim, Soopil
    Chikontwe, Philip
    An, Sion
    Park, Sang Hyun
    PATTERN RECOGNITION, 2023, 137
  • [2] Uncertainty-aware pseudo-label and consistency for semi-supervised medical image segmentation
    Lu, Liyun
    Yin, Mengxiao
    Fu, Liyao
    Yang, Feng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79
  • [3] Uncertainty-aware representation calibration for semi-supervised medical imaging segmentation
    Wu, Yuanchen
    Li, Xiaoqiang
    Zhou, Yue
    NEUROCOMPUTING, 2024, 595
  • [4] Uncertainty-aware consistency learning for semi-supervised medical image segmentation
    Dong, Min
    Yang, Ating
    Wang, Zhenhang
    Li, Dezhen
    Yang, Jing
    Zhao, Rongchang
    KNOWLEDGE-BASED SYSTEMS, 2025, 309
  • [5] Semantic contrast with uncertainty-aware pseudo label for lumbar semi-supervised classification
    Hai J.
    Chen J.
    Qiao K.
    Liang N.
    Su Z.
    Lv H.
    Yan B.
    Computers in Biology and Medicine, 2024, 178
  • [6] Evidence-based uncertainty-aware semi-supervised medical image segmentation
    Chen, Yingyu
    Yang, Ziyuan
    Shen, Chenyu
    Wang, Zhiwen
    Zhang, Zhongzhou
    Qin, Yang
    Wei, Xin
    Lu, Jingfeng
    Liu, Yan
    Zhang, Yi
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 170
  • [7] Exploring refined boundaries and accurate pseudo-labels for semi-supervised medical image segmentation
    Ma, Xiaochen
    Li, Yanfeng
    Sun, Jia
    Chen, Houjin
    Ren, Yihan
    Chen, Ziwei
    APPLIED INTELLIGENCE, 2025, 55 (03)
  • [8] Hierarchical deep network with uncertainty-aware semi-supervised learning for vessel segmentation
    Li, Chenxin
    Ma, Wenao
    Sun, Liyan
    Ding, Xinghao
    Huang, Yue
    Wang, Guisheng
    Yu, Yizhou
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (04) : 3151 - 3164
  • [9] Hierarchical deep network with uncertainty-aware semi-supervised learning for vessel segmentation
    Chenxin Li
    Wenao Ma
    Liyan Sun
    Xinghao Ding
    Yue Huang
    Guisheng Wang
    Yizhou Yu
    Neural Computing and Applications, 2022, 34 : 3151 - 3164
  • [10] Semi-supervised dimensionality reduction of hyperspectral imagery using pseudo-labels
    Wu, Hao
    Prasad, Saurabh
    PATTERN RECOGNITION, 2018, 74 : 212 - 224