Event Detection, Localization, and Classification Based on Semi-Supervised Learning in Power Grids

被引:7
|
作者
Yang, Fan [1 ]
Ling, Zenan [2 ,3 ]
Zhang, Yuhang [4 ]
He, Xing [4 ]
Ai, Qian [4 ]
Qiu, Robert C. [5 ]
机构
[1] China Elect Power Res Inst, Beijing 100192, Peoples R China
[2] Peking Univ, Key Lab Machine Percept, Beijing 100871, Peoples R China
[3] Peking Univ, Sch Artificial Intelligence, Beijing 100871, Peoples R China
[4] Shanghai Jiao Tong Univ, State Energy Smart Grid Res & Dev Ctr, Dept Elect Engn, Shanghai 200240, Peoples R China
[5] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Classification; event detection and localization; invertible neural network; pseudo label; risk assessment; semi-supervised learning; SYNCHROPHASOR DATA; ANOMALY DETECTION; TRANSMISSION; SYSTEM; LINE;
D O I
10.1109/TPWRS.2022.3209343
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Real-time situational awareness and event analysis are crucial to the security of the modern power grid, which is a complicated nonlinear system and hard to be completely modeled. Massive data is collected but the information hasn't been sufficiently leveraged. To effectively extract the event features, this paper proposes a framework for event detection, localization, and classification in power grids based on semi-supervised learning. Specifically, event detection is realized by invertible neural network (INN), hence to learn complex distributions of real-world measurements in a flexible way. Abundant normal measurements are learned by INN and explicit log-likelihoods then serve as the indicator to distinguish events with adequate sensitivity. Moreover, risks induced by events are assessed and spatial locations are determined. Since the majority of power system events are recorded without labels in practice, a pseudo label (PL) technique is leveraged to classify events with limited labels. The PL-based approach has an enhanced separating capability for events and outperforms other approaches under a low labeling rate. Case studies with simulated data in the IEEE 39-bus system and real-world measurements verify the effectiveness of the proposed framework.
引用
收藏
页码:4080 / 4094
页数:15
相关论文
共 50 条
  • [21] Sample Efficient Home Power Anomaly Detection in Real Time Using Semi-Supervised Learning
    Wang, Xinlin
    Yang, Insoon
    Ahn, Sung-Hoon
    IEEE ACCESS, 2019, 7 : 139712 - 139725
  • [22] Cast Shadow Detection Based on Semi-supervised Learning
    Jarraya, Salma Kammoun
    Boukhriss, Rania Rebai
    Hammami, Mohamed
    Ben-Abdallah, Hanene
    IMAGE ANALYSIS AND RECOGNITION, PT I, 2012, 7324 : 19 - 26
  • [23] Ensemble-Based Semi-Supervised Learning for Milling Chatter Detection
    Liu, Weichao
    Wang, Pengyu
    You, Youpeng
    MACHINES, 2022, 10 (11)
  • [24] Fuzziness based semi-supervised learning approach for intrusion detection system
    Ashfaq, Rana Aamir Raza
    Wang, Xi-Zhao
    Huang, Joshua Zhexue
    Abbas, Haider
    He, Yu-Lin
    INFORMATION SCIENCES, 2017, 378 : 484 - 497
  • [25] FLOW BASED BOTNET DETECTION THROUGH SEMI-SUPERVISED ACTIVE LEARNING
    Qiu, Zhicong
    Miller, David J.
    Kesidis, George
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 2387 - 2391
  • [26] Semi-Supervised Learning-Based Method for Unknown Anomaly Detection
    Cheng, Yudong
    Zhou, Fang
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2024, 61 (07): : 1670 - 1680
  • [27] Research on pedestrian detection based on Semi-Supervised learning
    Ma, Zhiwei
    Jin, Xiaofeng
    2012 INTERNATIONAL CONFERENCE ON FUTURE COMMUNICATION AND COMPUTER TECHNOLOGY (ICFCCT 2012), 2012, : 362 - 366
  • [28] Flow-based anomaly detection using semi-supervised learning
    Jadidi, Zahra
    Muthukkumarasamy, Vallipuram
    Sithirasenan, Elankayer
    Singh, Kalvinder
    2015 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ICSPCS), 2015,
  • [29] Graph-based Semi-supervised Learning for Text Classification
    Widmann, Natalie
    Verberne, Suzan
    ICTIR'17: PROCEEDINGS OF THE 2017 ACM SIGIR INTERNATIONAL CONFERENCE THEORY OF INFORMATION RETRIEVAL, 2017, : 59 - 66
  • [30] A survey of multi-label classification based on supervised and semi-supervised learning
    Han, Meng
    Wu, Hongxin
    Chen, Zhiqiang
    Li, Muhang
    Zhang, Xilong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (03) : 697 - 724