ON THE REGULARITY OF SMALL SYMBOLIC POWERS OF EDGE IDEALS OF GRAPHS

被引:2
作者
Fakhari, S. A. Seyed [1 ]
机构
[1] Univ Los Andes, Dept Matemat, Bogota, Colombia
关键词
ASYMPTOTIC-BEHAVIOR; BOUNDS;
D O I
10.7146/math.scand.a-134104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assume that G is a graph with edge ideal I (G) and let I (G)((s)) denote the s-th symbolic power of I (G). It is proved that for every integer s >= 1, reg(I(G)((s+1))) <= max {reg(I(G)) + 2s, reg (I(G)((s+1)) + I(G)(s))} As a consequence, we conclude that reg( I (G)((2))) <= reg( I (G)) + 2, and reg( I (G)((3))) <= reg( I (G))+ 4. Moreover, it is shown that if for some integer k >= 1, the graph G has no odd cycle of length at most 2k - 1, then reg( I (G)((s))) <= 2s + reg( I (G)) - 2, for every integer s <= k + 1. Finally, it is proven that reg( I (G)((s))) = 2s, for s. {2, 3, 4}, provided that the complementary graph (G) over bar is chordal.
引用
收藏
页码:39 / 59
页数:21
相关论文
共 34 条
  • [1] REGULARITY OF POWERS OF EDGE IDEALS OF UNICYCLIC GRAPHS
    Alilooee, Ali
    Beyarslan, Selvi Kara
    Selvaraja, S.
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (03) : 699 - 728
  • [2] POWERS OF EDGE IDEALS OF REGULARITY THREE BIPARTITE GRAPHS
    Alilooee, Ali
    Banerjee, Arindam
    [J]. JOURNAL OF COMMUTATIVE ALGEBRA, 2017, 9 (04) : 441 - 454
  • [3] Banerjee A., 2020, ALGEBR COMB, V3, P839
  • [4] Banerjee A., PREPRINTS
  • [5] Banerjee A., 2019, Adv. Algebra, V277, P17, DOI [10.1007/978-3-030-11521-02, DOI 10.1007/978-3-030-11521-02, 10.1007/978-3-030-11521-0\\_2]
  • [6] The regularity of powers of edge ideals
    Banerjee, Arindam
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 41 (02) : 303 - 321
  • [7] Regularity of powers of forests and cycles
    Beyarslan, Selvi
    Ha, Huy Tai
    Tran Nam Trung
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (04) : 1077 - 1095
  • [8] Regularity of bicyclic graphs and their powers
    Cid-Ruiz, Yairon
    Jafari, Sepehr
    Nemati, Navid
    Picone, Beatrice
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (03)
  • [9] Asymptotic behaviour of the Castelnuovo-Mumford regularity
    Cutkosky, SD
    Herzog, J
    Trung, NV
    [J]. COMPOSITIO MATHEMATICA, 1999, 118 (03) : 243 - 261
  • [10] Bounds on the regularity and projective dimension of ideals associated to graphs
    Dao, Hailong
    Huneke, Craig
    Schweig, Jay
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 38 (01) : 37 - 55