Surface and Interface Engineering for the Catalysts of Electrocatalytic CO2 Reduction

被引:4
|
作者
Hu, Yiping [1 ]
Kang, Yijin [1 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
electrocatalyst; sustainability; CO2; reduction; surface; interface; SELECTIVE ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE REDUCTION; COPPER ELECTRODES; HETEROGENEOUS CATALYSTS; GOLD NANOMATERIALS; HIGH-EFFICIENCY; ACTIVE-SITES; CU CATALYST; ELECTROREDUCTION; METAL;
D O I
10.1002/asia.202201001
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The massive use of fossil fuels releases a great amount of CO2, which substantially contributes to the global warming. For the global goal of putting CO2 emission under control, effective utilization of CO2 is particularly meaningful. Electrocatalytic CO2 reduction reaction (eCO(2)RR) has great potential in CO2 utilization, because it can convert CO2 into valuable carbon-containing chemicals and feedstock using renewable electricity. The catalyst design for eCO(2)RR is a key challenge to achieving efficient conversion of CO2 to fuels and useful chemicals. For a typical heterogeneous catalyst, surface and interface engineering is an effective approach to enhance reaction activity. Herein, the development and research progress in CO2 catalysts with focus on surface and interface engineering are reviewed. First, the fundaments of eCO(2)RR is briefly discussed from the reaction mechanism to performance evaluation methods, introducing the role of the surface and interface engineering of electrocatalyst in eCO(2)RR. Then, several routes to optimize the surface and interface of CO2 electrocatalysts, including morphology, dopants, atomic vacancies, grain boundaries, surface modification, etc., are reviewed and representative examples are given. At the end of this review, we share our personal views in future research of eCO(2)RR.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Nanocluster Surface Microenvironment Modulates Electrocatalytic CO2 Reduction
    Yoo, Seungwoo
    Yoo, Suhwan
    Deng, Guocheng
    Sun, Fang
    Lee, Kangjae
    Jang, Hyunsung
    Lee, Chan Woo
    Liu, Xiaolin
    Jang, Junghwan
    Tang, Qing
    Hwang, Yun Jeong
    Hyeon, Taeghwan
    Bootharaju, Megalamane Siddaramappa
    ADVANCED MATERIALS, 2024, 36 (13)
  • [42] An Extrinsic Faradaic Layer on CuSn for High-Performance Electrocatalytic CO2 Reduction
    Ren, Feilong
    Hu, Wenjian
    Wang, Cheng
    Wang, Pin
    Li, Wenbo
    Wu, Congping
    Yao, Yingfang
    Luo, Wenjun
    Zou, Zhigang
    CCS CHEMISTRY, 2022, 4 (05): : 1610 - 1618
  • [43] Interface engineering of a GaN/In2O3 heterostructure for highly efficient electrocatalytic CO2 reduction to formate
    Li, Xuan
    Jiang, Xingxing
    Kong, Yan
    Sun, Jianju
    Hu, Qi
    Chai, Xiaoyan
    Yang, Hengpan
    He, Chuanxin
    CHINESE JOURNAL OF CATALYSIS, 2023, 50 : 314 - 323
  • [44] Stabilizing CO2 Intermediates at the Acidic Interface using Molecularly Dispersed Cobalt Phthalocyanine as Catalysts for CO2 Reduction
    Feng, Shijia
    Wang, Xiaojun
    Cheng, Dongfang
    Luo, Yao
    Shen, Mengxin
    Wang, Jingyang
    Zhao, Wei
    Fang, Susu
    Zheng, Hongzhi
    Ji, Liyao
    Zhang, Xing
    Xu, Weigao
    Liang, Yongye
    Sautet, Philippe
    Zhu, Jia
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (08)
  • [45] Synthesis of C2 products via electrocatalytic CO2 reduction
    Zhang, Chao
    Lu, Tongbu
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (31): : 3401 - 3417
  • [46] Membrane Electrode Assembly for Electrocatalytic CO2 Reduction: Principle and Application
    Zhang, Zheng
    Huang, Xin
    Chen, Zhou
    Zhu, Junjiang
    Endrodi, Balazs
    Janaky, Csaba
    Deng, Dehui
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (28)
  • [47] Modified Cu active sites by alloying for efficient electrocatalytic reduction CO2 to CO
    Wang, Yan
    Xie, Ruikuan
    Ci, Naixuan
    Zhu, Zhiyuan
    Li, Chaoyi
    Chai, Guoliang
    Qiu, Hua-Jun
    Zhang, Yinghe
    JOURNAL OF ENERGY CHEMISTRY, 2024, 99 : 450 - 457
  • [48] Highly Selective Electrocatalytic CO2 Reduction to Methanol on Iridium Dioxide with CO* Spectators
    Zhao, He
    Zhu, Haiyan
    Feng, Yifan
    Zhao, Qinfu
    Suo, Bingbing
    Zou, Wenli
    Han, Huixian
    Zhai, Gaohong
    Jiang, Zhenyi
    Song, Qi
    Li, Yawei
    CHEMELECTROCHEM, 2020, 7 (24): : 5036 - 5043
  • [49] Mechanism of electrocatalytic CO2 reduction reaction by borophene supported bimetallic catalysts
    Liu, Meiling
    Balamurugan, Jayaraman
    Liang, Tongxiang
    Liu, Chao
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 659 : 959 - 973
  • [50] Mechanism of surface oxygen-containing species promoted electrocatalytic CO2 reduction
    Fu, Zhanzhao
    Ouyang, Yixin
    Wu, Mingliang
    Ling, Chongyi
    Wang, Jinlan
    SCIENCE BULLETIN, 2024, 69 (10) : 1410 - 1417