Surface and Interface Engineering for the Catalysts of Electrocatalytic CO2 Reduction

被引:4
|
作者
Hu, Yiping [1 ]
Kang, Yijin [1 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
electrocatalyst; sustainability; CO2; reduction; surface; interface; SELECTIVE ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE REDUCTION; COPPER ELECTRODES; HETEROGENEOUS CATALYSTS; GOLD NANOMATERIALS; HIGH-EFFICIENCY; ACTIVE-SITES; CU CATALYST; ELECTROREDUCTION; METAL;
D O I
10.1002/asia.202201001
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The massive use of fossil fuels releases a great amount of CO2, which substantially contributes to the global warming. For the global goal of putting CO2 emission under control, effective utilization of CO2 is particularly meaningful. Electrocatalytic CO2 reduction reaction (eCO(2)RR) has great potential in CO2 utilization, because it can convert CO2 into valuable carbon-containing chemicals and feedstock using renewable electricity. The catalyst design for eCO(2)RR is a key challenge to achieving efficient conversion of CO2 to fuels and useful chemicals. For a typical heterogeneous catalyst, surface and interface engineering is an effective approach to enhance reaction activity. Herein, the development and research progress in CO2 catalysts with focus on surface and interface engineering are reviewed. First, the fundaments of eCO(2)RR is briefly discussed from the reaction mechanism to performance evaluation methods, introducing the role of the surface and interface engineering of electrocatalyst in eCO(2)RR. Then, several routes to optimize the surface and interface of CO2 electrocatalysts, including morphology, dopants, atomic vacancies, grain boundaries, surface modification, etc., are reviewed and representative examples are given. At the end of this review, we share our personal views in future research of eCO(2)RR.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO2 Reduction
    Huo, Shengjuan
    Weng, Zhe
    Wu, Zishan
    Zhong, Yiren
    Wu, Yueshen
    Fang, Jianhui
    Wang, Hailiang
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (34) : 28519 - 28526
  • [32] Electrocatalytic CO2 Reduction: from Discrete Molecular Catalysts to Their Integrated Catalytic Materials
    Lei, Kai
    Yu Xia, Bao
    CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (30)
  • [33] Understanding oxidation state of Cu-based catalysts for electrocatalytic CO2 reduction
    Zhu, Ping
    Qin, Yuan-Chu
    Cai, Xin-Hao
    Wang, Wen-Min
    Zhou, Ying
    Zhou, Lin-Lin
    Liu, Peng-Hui
    Peng, Lu
    Wang, Wen-Long
    Wu, Qian-Yuan
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 218 : 1 - 24
  • [34] Electrocatalytic reduction of CO2 to useful chemicals on copper nanoparticles
    Dongare, Saudagar
    Singh, Neetu
    Bhunia, Haripada
    APPLIED SURFACE SCIENCE, 2021, 537
  • [35] Porous Polymer Materials for CO2 Capture and Electrocatalytic Reduction
    Wang, Hui
    Wang, Genyuan
    Hu, Liang
    Ge, Bingcheng
    Yu, Xiaoliang
    Deng, Jiaojiao
    MATERIALS, 2023, 16 (04)
  • [36] Advances in the design strategy of bimetallic catalysts for the electrocatalytic reduction of CO2
    Shi, Long
    Song, Jia
    Yang, Yuzhu
    Yang, Lin
    Dai, Zhongde
    Yao, Lu
    Jiang, Wenju
    JOURNAL OF MATERIALS CHEMISTRY A, 2025, 13 (04) : 2478 - 2504
  • [37] Hollow Porous Ag Spherical Catalysts for Highly Efficient and Selective Electrocatalytic Reduction of CO2 to CO
    Liu, Shao-Qing
    Wu, Shu-Wen
    Gao, Min-Rui
    Li, Mao-Shuai
    Fu, Xian-Zhu
    Luo, Jing-Li
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (17) : 14443 - 14450
  • [38] Sn Quantum Dots for Electrocatalytic Reduction of CO2 to HCOOH
    Tian Jianjian
    Ma Xia
    Wang Min
    Yao Heliang
    Hua Zile
    Zhang Lingxia
    JOURNAL OF INORGANIC MATERIALS, 2021, 36 (12) : 1337 - +
  • [39] Recent Advances on Single-Atom Catalysts for CO2 Reduction
    Liu, Lizhen
    Li, Mingtao
    Chen, Fang
    Huang, Hongwei
    SMALL STRUCTURES, 2023, 4 (03):
  • [40] Efficient electrocatalytic CO2 reduction on a three-phase interface
    Li, Jun
    Chen, Guangxu
    Zhu, Yangying
    Liang, Zheng
    Pei, Allen
    Wu, Chun-Lan
    Wang, Hongxia
    Lee, Hye Ryoung
    Liu, Kai
    Chu, Steven
    Cui, Yi
    NATURE CATALYSIS, 2018, 1 (08): : 592 - 600