Augmented spectral formulation for the Stokes problem with variable viscosity and mixed boundary conditions

被引:1
作者
Bousbiat, C. [1 ]
Daikh, Y. [1 ]
Maarouf, S. [1 ]
Yakoubi, D. [2 ]
机构
[1] Univ Jijel, Lab Anal Optimisat & Traitement Informat, Jijel 18000, Algeria
[2] Leonard Vinci Pole Univ, Res Ctr, F-92916 Paris, France
关键词
Stokes equations; Variable viscosity; Augmented formulation; Mixed boundary conditions; Spectral methods; A priori estimates; FINITE-ELEMENT METHODS; PRESSURE FORMULATION; EQUATIONS; VORTICITY; VELOCITY; DISCRETIZATION; HEAT;
D O I
10.1007/s10092-023-00530-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the analysis of a new augmented formulation in terms of vorticity, velocity and pressure for the Stokes equations with variable viscosity and mixed boundary conditions. The well-posedness of the continuous problem holds under assumptions on the viscosity. When the domain is a parallelepiped, the spectral discretization is proposed using the Galerkin method with numerical integration. Then, we prove the well-posedness of the obtained discrete problem under the same type of conditions on the viscosity. A priori error estimates is then derived for the three unknowns. Finally, numerical experiments are presented that confirm the interest of the discretization.
引用
收藏
页数:23
相关论文
共 27 条
[1]   Stabilized finite element method for Navier-Stokes equations with physical boundary conditions [J].
Amara, M. ;
Capatina-Papaghiuc, D. ;
Trujillo, D. .
MATHEMATICS OF COMPUTATION, 2007, 76 (259) :1195-1217
[2]  
Amoura K., 2012, Progress in Computational Physics, V2, P42
[3]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[4]  
2-B
[5]   Incorporating variable viscosity in vorticity-based formulations for Brinkman equations [J].
Anaya, Veronica ;
Gomez-Vargas, Bryan ;
Mora, David ;
Ruiz-Baier, Ricardo .
COMPTES RENDUS MATHEMATIQUE, 2019, 357 (06) :552-560
[6]   WELL-POSED STOKES/BRINKMAN AND STOKES/DARCY COUPLING REVISITED WITH NEW JUMP INTERFACE CONDITIONS [J].
Angot, Philippe .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (05) :1875-1911
[7]  
[Anonymous], 1992, Approximations Spectrales Des Problemes Aux Limites Elliptiques
[8]  
Bernardi C., 1995, Mathematical Modelling and Numerical Analysis, V29, P871
[9]  
Bernardi C., 1997, HDB NUMERICAL ANAL, P209
[10]  
Bernardi C., 2004, Discretisations variationnelles de problemes aux limites elliptiques