Timely Data Collection for UAV-Based IoT Networks: A Deep Reinforcement Learning Approach

被引:9
|
作者
Hu, Yingmeng [1 ]
Liu, Yan [1 ]
Kaushik, Aryan [2 ]
Masouros, Christos [3 ]
Thompson, John S. [4 ]
机构
[1] China Satellite Network Innovat Co Ltd, Beijing 100029, Peoples R China
[2] Univ Sussex, Sch Engn & Informat, Brighton BN1 9RH, England
[3] UCL, Dept Elect & Elect Engn, London WC1E 7JE, England
[4] Univ Edinburgh, Inst Digital Commun, Sch Engn, Edinburgh EH9 3JL, Scotland
关键词
Data collection; Sensors; Internet of Things; Trajectory; Task analysis; Reinforcement learning; Memory; Age of information (AoI); data collection; deep reinforcement learning (DRL); unmanned aerial vehicle (UAV) trajectory optimization; INTERNET; THINGS; MODEL; AOI;
D O I
10.1109/JSEN.2023.3265935
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In some real-time Internet of Things (IoT) applications, the timeliness of sensor data is very important for the performance of a system. How to collect the data of sensor nodes (SNs) is a problem to be solved for an unmanned aerial vehicle (UAV) in a specified area, where different nodes have different timeliness priorities. To efficiently collect the data, a guided search deep reinforcement learning (GSDRL) algorithm is presented to help the UAV with different initial positions to independently complete the task of data collection and forwarding. First, the data collection process is modeled as a sequential decision problem for minimizing the average age of information (AoI) or maximizing the number of collected nodes according to specific environment. Then, the data collection strategy is optimized by the GSDRL algorithm. After training the network using the GSDRL algorithm, the UAV has the ability to perform autonomous navigation and decision-making to complete the complexity task more efficiently and rapidly. Simulation experiments show that the GSDRL algorithm has strong adaptability to adverse environments and obtains a good strategy for UAV data collection and forwarding.
引用
收藏
页码:12295 / 12308
页数:14
相关论文
共 50 条
  • [31] Low-AoI data collection in integrated UAV-UGV-assisted IoT systems based on deep reinforcement learning
    Fu, Xiuwen
    Deng, Chang
    Guerrieri, Antonio
    COMPUTER NETWORKS, 2025, 259
  • [32] Deep Reinforcement Learning for Interference Management in UAV-Based 3D Networks: Potentials and Challenges
    Vaezi, Mojtaba
    Lin, Xingqin
    Zhang, Hongliang
    Saad, Walid
    Poor, H. Vincent
    IEEE COMMUNICATIONS MAGAZINE, 2024, 62 (02) : 134 - 140
  • [33] A Deep Reinforcement Learning Approach to Energy-harvesting UAV-aided Data Collection
    Zhang, Ning
    Liu, Juan
    Xie, Lingfu
    Tong, Peng
    2020 12TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2020, : 93 - 98
  • [34] Deep Reinforcement Learning for AoI Minimization in UAV-Aided Data Collection for WSN and IoT Applications: A Survey
    Amodu, Oluwatosin Ahmed
    Jarray, Chedia
    Mahmood, Raja Azlina Raja
    Althumali, Huda
    Bukar, Umar Ali
    Nordin, Rosdiadee
    Abdullah, Nor Fadzilah
    Luong, Nguyen Cong
    IEEE ACCESS, 2024, 12 : 108000 - 108040
  • [35] Learning-Based Aerial Charging Scheduling for UAV-Based Data Collection
    Yang, Jia
    Zhu, Kun
    Zhu, Xiaojun
    Wang, Junhua
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2021, PT II, 2021, 12938 : 600 - 611
  • [36] Modeling of a UAV-based Data Collection System
    Arvanitaki, Antonia
    Pappas, Nikolaus
    2017 IEEE 22ND INTERNATIONAL WORKSHOP ON COMPUTER AIDED MODELING AND DESIGN OF COMMUNICATION LINKS AND NETWORKS (CAMAD), 2017,
  • [37] Deep Reinforcement Learning for Aerial Data Collection in Hybrid-Powered NOMA-IoT Networks
    Zhang, Zhanpeng
    Xu, Chen
    Li, Zewu
    Zhao, Xiongwen
    Wu, Runze
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (02) : 1761 - 1774
  • [38] UAV UV Information Collection Method Based on Deep Reinforcement Learning
    Zhao, Taifei
    Guo, Jiahao
    Xin, Yu
    Wang, Lu
    ACTA PHOTONICA SINICA, 2025, 54 (01)
  • [39] Lightweight IDS For UAV Networks: A Periodic Deep Reinforcement Learning-based Approach
    Bouhamed, Omar
    Bouachir, Ouns
    Aloqaily, Moayad
    Al Ridhawi, Ismaeel
    2021 IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK MANAGEMENT (IM 2021), 2021, : 1032 - 1037
  • [40] 5G Network on Wings: A Deep Reinforcement Learning Approach to the UAV-Based Integrated Access and Backhaul
    Zhang, Hongyi
    Qi, Zhiqiang
    Li, Jingya
    Aronsson, Anders
    Bosch, Jan
    Holmström Olsson, Helena
    IEEE Transactions on Machine Learning in Communications and Networking, 2024, 2 : 1109 - 1126