Timely Data Collection for UAV-Based IoT Networks: A Deep Reinforcement Learning Approach

被引:9
|
作者
Hu, Yingmeng [1 ]
Liu, Yan [1 ]
Kaushik, Aryan [2 ]
Masouros, Christos [3 ]
Thompson, John S. [4 ]
机构
[1] China Satellite Network Innovat Co Ltd, Beijing 100029, Peoples R China
[2] Univ Sussex, Sch Engn & Informat, Brighton BN1 9RH, England
[3] UCL, Dept Elect & Elect Engn, London WC1E 7JE, England
[4] Univ Edinburgh, Inst Digital Commun, Sch Engn, Edinburgh EH9 3JL, Scotland
关键词
Data collection; Sensors; Internet of Things; Trajectory; Task analysis; Reinforcement learning; Memory; Age of information (AoI); data collection; deep reinforcement learning (DRL); unmanned aerial vehicle (UAV) trajectory optimization; INTERNET; THINGS; MODEL; AOI;
D O I
10.1109/JSEN.2023.3265935
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In some real-time Internet of Things (IoT) applications, the timeliness of sensor data is very important for the performance of a system. How to collect the data of sensor nodes (SNs) is a problem to be solved for an unmanned aerial vehicle (UAV) in a specified area, where different nodes have different timeliness priorities. To efficiently collect the data, a guided search deep reinforcement learning (GSDRL) algorithm is presented to help the UAV with different initial positions to independently complete the task of data collection and forwarding. First, the data collection process is modeled as a sequential decision problem for minimizing the average age of information (AoI) or maximizing the number of collected nodes according to specific environment. Then, the data collection strategy is optimized by the GSDRL algorithm. After training the network using the GSDRL algorithm, the UAV has the ability to perform autonomous navigation and decision-making to complete the complexity task more efficiently and rapidly. Simulation experiments show that the GSDRL algorithm has strong adaptability to adverse environments and obtains a good strategy for UAV data collection and forwarding.
引用
收藏
页码:12295 / 12308
页数:14
相关论文
共 50 条
  • [1] Multitask Transfer Deep Reinforcement Learning for Timely Data Collection in Rechargeable-UAV-Aided IoT Networks
    Yi, Mengjie
    Wang, Xijun
    Liu, Juan
    Zhang, Yan
    Hou, Ronghui
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (23) : 20545 - 20559
  • [2] Joint AoI-Aware UAVs Trajectory Planning and Data Collection in UAV-Based IoT Systems: A Deep Reinforcement Learning Approach
    Xiao, Xiongbing
    Wang, Xiumin
    Lin, Weiwei
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (04) : 6484 - 6495
  • [3] Deep Reinforcement Learning Based Energy Efficient Multi-UAV Data Collection for IoT Networks
    Khodaparast, Seyed Saeed
    Lu, Xiao
    Wang, Ping
    Uyen Trang Nguyen
    IEEE OPEN JOURNAL OF VEHICULAR TECHNOLOGY, 2021, 2 : 249 - 260
  • [4] Trajectory Design for UAV-Based Internet of Things Data Collection: A Deep Reinforcement Learning Approach
    Wang, Yang
    Gao, Zhen
    Zhang, Jun
    Cao, Xianbin
    Zheng, Dezhi
    Gao, Yue
    Ng, Derrick Wing Kwan
    Di Renzo, Marco
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (05): : 3899 - 3912
  • [5] Deep Reinforcement Learning-Based Collaborative Data Collection in UAV-Assisted Underwater IoT
    Fu, Xiuwen
    Kang, Shengqi
    IEEE SENSORS JOURNAL, 2025, 25 (01) : 1611 - 1626
  • [6] Synchronizing UAV Teams for Timely Data Collection and Energy Transfer by Deep Reinforcement Learning
    Oubbati, Omar Sami
    Atiquzzaman, Mohammed
    Lim, Hyotaek
    Rachedi, Abderrezak
    Lakas, Abderrahmane
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (06) : 6682 - 6697
  • [7] Cooperative Data Collection for UAV-Assisted Maritime IoT Based on Deep Reinforcement Learning
    Fu, Xiuwen
    Huang, Xiong
    Pan, Qiongshan
    Pace, Pasquale
    Aloi, Gianluca
    Fortino, Giancarlo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (07) : 10333 - 10349
  • [8] Multi-UAV Reinforcement Learning for Data Collection in Cellular MIMO Networks
    Diaz-Vilor, Carles
    Abdelhady, Amr M.
    Eltawil, Ahmed M.
    Jafarkhani, Hamid
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (10) : 15462 - 15476
  • [9] AoI-Energy-Aware UAV-Assisted Data Collection for IoT Networks: A Deep Reinforcement Learning Method
    Sun, Mengying
    Xu, Xiaodong
    Qin, Xiaoqi
    Zhang, Ping
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (24) : 17275 - 17289
  • [10] Energy Efficient UAV-Assisted IoT Data Collection: A Graph-Based Deep Reinforcement Learning Approach
    Wu, Qianqian
    Liu, Qiang
    Zhu, Wenliang
    Wu, Zefan
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (06): : 6082 - 6094