Extension DGAs and topological Hochschild homology

被引:0
|
作者
Bayindir, Haldun Ozgur [1 ]
机构
[1] City Univ London, Dept Math, London, England
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2023年 / 23卷 / 02期
关键词
MODEL; EQUIVALENCES; ALGEBRAS;
D O I
10.2140/agt.2023.23.895
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study differential graded algebras (DGAs) that arise from ring spectra through the extension of scalars functor. Namely, we study DGAs whose corresponding Eilenberg- Mac Lane ring spectrum is equivalent to HZ <^> E for some ring spectrum E. We call these DGAs extension DGAs. We also define and study this notion for E1 DGAs. The topological Hochschild homology (THH) spectrum of an extension DGA splits in a convenient way. We show that formal DGAs with nice homology rings are extension, and therefore their THH groups can be obtained from their Hochschild homology groups in many cases of interest. We also provide interesting examples of DGAs that are not extension. In the second part, we study properties of extension DGAs. We show that, in various cases, topological equivalences and quasi-isomorphisms agree for extension DGAs. From this, we obtain that dg Morita equivalences and Morita equivalences also agree in these cases.
引用
收藏
页码:895 / 932
页数:39
相关论文
共 28 条
  • [1] DGAs with polynomial homology
    Bayindir, Haldun Ozgur
    ADVANCES IN MATHEMATICS, 2021, 389
  • [2] Derived invariants from topological Hochschild homology
    Antieau, Benjamin
    Bragg, Daniel
    ALGEBRAIC GEOMETRY, 2022, 9 (03): : 364 - 399
  • [3] Higher topological Hochschild homology of Thom spectra
    Schlichtkrull, Christian
    JOURNAL OF TOPOLOGY, 2011, 4 (01) : 161 - 189
  • [4] Cyclotomic structure in the topological Hochschild homology of DX
    Malkiewich, Cary
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (04): : 2307 - 2356
  • [5] Generalized spectral categories, topological Hochschild homology and trace maps
    Tabuada, Goncalo
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2010, 10 (01): : 137 - 213
  • [6] HOCHSCHILD HOMOLOGY AND TRUNCATED CYCLES
    Bergh, Petter Andreas
    Han, Yang
    Madsen, Dag
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (04) : 1133 - 1139
  • [7] Universal operations in Hochschild homology
    Wahl, Nathalie
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 720 : 81 - 127
  • [8] Hochschild homology and global dimension
    Bergh, Petter Andreas
    Madsen, Dag
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 : 473 - 482
  • [9] On the Hochschild homology of proper Lie groupoids
    Pflaum, Markus J.
    Posthuma, Hessel
    Tang, Xiang
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2023, 17 (01) : 101 - 162
  • [10] On the Hochschild (co)homology of quantum homogeneous spaces
    Kraehmer, Ulrich
    ISRAEL JOURNAL OF MATHEMATICS, 2012, 189 (01) : 237 - 266