An Interface-Type Memristive Device for Artificial Synapse and Neuromorphic Computing

被引:22
|
作者
Kunwar, Sundar [1 ]
Jernigan, Zachary [1 ]
Hughes, Zach [1 ]
Somodi, Chase [1 ]
Saccone, Michael D. D. [2 ]
Caravelli, Francesco [2 ]
Roy, Pinku [1 ,4 ]
Zhang, Di [1 ]
Wang, Haiyan [3 ]
Jia, Quanxi [4 ]
MacManus-Driscoll, Judith L. L. [5 ]
Kenyon, Garrett [6 ]
Sornborger, Andrew [6 ]
Nie, Wanyi [1 ]
Chen, Aiping [1 ]
机构
[1] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, T 4, Los Alamos, NM 87545 USA
[3] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
[4] Univ Buffalo, State Univ New York, Dept Mat Design & Innovat, Buffalo, NY 14260 USA
[5] Univ Cambridge, Dept Mat Sci & Met, 27 Charles Babbage Rd, Cambridge CB3 0FS, England
[6] Los Alamos Natl Lab, CCS 3, Los Alamos, NM 87545 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
analog resistive switching; artificial synapse; interface-controlled memristive devices; neuromorphic computing; RESISTIVE SWITCHING BEHAVIORS; CIRCUITS; MEMORY; OXIDE; FILAMENTARY; ELECTRONICS; CHALLENGES; PLASTICITY; EFFICIENT; TERM;
D O I
10.1002/aisy.202300035
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Interface-type (IT) metal/oxide Schottky memristive devices have attracted considerable attention over filament-type (FT) devices for neuromorphic computing because of their uniform, filament-free, and analog resistive switching (RS) characteristics. The most recent IT devices are based on oxygen ions and vacancies movement to alter interfacial Schottky barrier parameters and thereby control RS properties. However, the reliability and stability of these devices have been significantly affected by the undesired diffusion of ionic species. Herein, a reliable interface-dominated memristive device is demonstrated using a simple Au/Nb-doped SrTiO3 (Nb:STO) Schottky structure. The Au/Nb:STO Schottky barrier modulation by charge trapping and detrapping is responsible for the analog resistive switching characteristics. Because of its interface-controlled RS, the proposed device shows low device-to-device, cell-to-cell, and cycle-to-cycle variability while maintaining high repeatability and stability during endurance and retention tests. Furthermore, the Au/Nb:STO IT memristive device exhibits versatile synaptic functions with an excellent uniformity, programmability, and reliability. A simulated artificial neural network with Au/Nb:STO synapses achieves a high recognition accuracy of 94.72% for large digit recognition from MNIST database. These results suggest that IT resistive switching can be potentially used for artificial synapses to build next-generation neuromorphic computing.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Interface-Type Ionic Memristor for Energy-Efficient Neuromorphic Hardware
    Yoo, Chan Sik
    Lee, Hong-Sub
    ACS APPLIED ELECTRONIC MATERIALS, 2024, 6 (05) : 3013 - 3023
  • [22] Artificial Optoelectronic Synapse with Nanolayered GaN/AlN Periodic Structure for Neuromorphic Computing
    Hua, Xiayang
    Zheng, Jiyuan
    Han, Xu
    Hao, Zhibiao
    Luo, Yi
    Sun, Changzheng
    Han, Yanjun
    Xiong, Bing
    Wang, Jian
    Li, Hongtao
    Gan, Lin
    Al Khalfioui, Mohamed
    Brault, Julien
    Wang, Lai
    ACS APPLIED NANO MATERIALS, 2023, 6 (10) : 8461 - 8467
  • [23] Ferroelectric polymer-based artificial synapse for neuromorphic computing
    Kim, Sungjun
    Heo, Keun
    Lee, Sunghun
    Seo, Seunghwan
    Kim, Hyeongjun
    Cho, Jeongick
    Lee, Hyunkyu
    Lee, Kyeong-Bae
    Park, Jin-Hong
    NANOSCALE HORIZONS, 2021, 6 (02) : 139 - 147
  • [24] Metallopolymeric Memristor Based Artificial Optoelectronic Synapse for Neuromorphic Computing
    Cheng, Xiaozhe
    Qin, Zhitao
    Guo, Hongen
    Dou, Zhitao
    Lian, Hong
    Fan, Jianfeng
    Qu, Yongquan
    Dong, Qingchen
    ACS APPLIED ELECTRONIC MATERIALS, 2024, 6 (06) : 4345 - 4355
  • [25] Voltage-Mode Ferroelectric Synapse for Neuromorphic Computing
    Luo, Jie
    Tian, Guo
    Zhang, Ding-Guo
    Zhang, Xing-Chen
    Lu, Zhen-Ni
    Zhang, Zhong-Da
    Cai, Jia-Wei
    Zhong, Ya-Nan
    Xu, Jian-Long
    Gao, Xu
    Wang, Sui-Dong
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (41) : 48452 - 48461
  • [26] Neuromorphic computing with memristive devices
    Wen Ma
    Mohammed A. Zidan
    Wei D. Lu
    Science China Information Sciences, 2018, 61
  • [27] Spray pyrolysis deposited iron tungstate memristive device for artificial synapse application
    Patil, Amitkumar R.
    Dongale, Tukaram D.
    Kamat, Rajanish K.
    Rajpure, Keshav Y.
    MATERIALS TODAY COMMUNICATIONS, 2021, 29
  • [28] Neuromorphic computing with memristive devices
    Wen MA
    Mohammed A.ZIDAN
    Wei D.LU
    ScienceChina(InformationSciences), 2018, 61 (06) : 136 - 144
  • [29] Modeling a Floating-Gate Memristive Device for Computer Aided Design of Neuromorphic Computing
    Danial, L.
    Gupta, V
    Pikhay, E.
    Roizin, Y.
    Kvatinsky, S.
    PROCEEDINGS OF THE 2020 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2020), 2020, : 472 - 477
  • [30] A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing
    van de Burgt, Yoeri
    Lubberman, Ewout
    Fuller, Elliot J.
    Keene, Scott T.
    Faria, Gregorio C.
    Agarwal, Sapan
    Marinella, Matthew J.
    Talin, A. Alec
    Salleo, Alberto
    NATURE MATERIALS, 2017, 16 (04) : 414 - +