Synchronization of phase oscillators on complex hypergraphs

被引:16
作者
Adhikari, Sabina [1 ]
Restrepo, Juan G. G. [1 ]
Skardal, Per Sebastian [2 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Trinity Coll, Dept Math, Hartford, CT 06106 USA
关键词
D O I
10.1063/5.0116747
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the effect of structured higher-order interactions on the collective behavior of coupled phase oscillators. By combining a hypergraph generative model with dimensionality reduction techniques, we obtain a reduced system of differential equations for the system's order parameters. We illustrate our framework with the example of a hypergraph with hyperedges of sizes 2 (links) and 3 (triangles). For this case, we obtain a set of two coupled nonlinear algebraic equations for the order parameters. For strong values of coupling via triangles, the system exhibits bistability and explosive synchronization transitions. We find conditions that lead to bistability in terms of hypergraph properties and validate our predictions with numerical simulations. Our results provide a general framework to study the synchronization of phase oscillators in hypergraphs, and they can be extended to hypergraphs with hyperedges of arbitrary sizes, dynamic-structural correlations, and other features.
引用
收藏
页数:9
相关论文
共 47 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[3]   Network geometry with flavor: From complexity to quantum geometry [J].
Bianconi, Ginestra ;
Rahmede, Christoph .
PHYSICAL REVIEW E, 2016, 93 (03)
[4]  
Bick C, 2022, Arxiv, DOI arXiv:2104.11329
[5]   Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review [J].
Bick, Christian ;
Goodfellow, Marc ;
Laing, Carlo R. ;
Martens, Erik A. .
JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2020, 10 (01)
[6]   Chaos in generically coupled phase oscillator networks with nonpairwise interactions [J].
Bick, Christian ;
Ashwin, Peter ;
Rodrigues, Ana .
CHAOS, 2016, 26 (09)
[7]   Langevin approach for the dynamics of the contact process on annealed scale-free networks [J].
Boguna, Marian ;
Castellano, Claudio ;
Pastor-Satorras, Romualdo .
PHYSICAL REVIEW E, 2009, 79 (03)
[8]   BIOLOGY OF SYNCHRONOUS FLASHING OF FIREFLIES [J].
BUCK, J ;
BUCK, E .
NATURE, 1966, 211 (5049) :562-&
[9]   Network clique cover approximation to analyze complex contagions through group interactions [J].
Burgio, Giulio ;
Arenas, Alex ;
Gomez, Sergio ;
Matamalas, Joan T. .
COMMUNICATIONS PHYSICS, 2021, 4 (01)
[10]  
Calmon L, 2022, Arxiv, DOI arXiv:2107.05107