A new approach to proper orthogonal decomposition with difference quotients

被引:6
|
作者
Eskew, Sarah Locke [1 ]
Singler, John R. [2 ]
机构
[1] Univ Tennessee Southern, Sch Math & Sci, 433 Madison St, Pulaski, TN 38478 USA
[2] Missouri Univ Sci & Technol, Dept Math & Stat, 400 W 12th St, Rolla, MO 65401 USA
基金
美国国家科学基金会;
关键词
Proper orthogonal decomposition; Projections; Approximation theory; Difference quotients; Reduced order models; REDUCED-ORDER MODELS; ERROR-BOUNDS; REDUCTION; POD; APPROXIMATION; OPTIMALITY;
D O I
10.1007/s10444-023-10011-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a recent work (Koc et al., SIAM J. Numer. Anal. 59(4), 2163-2196, 2021), the authors showed that including difference quotients (DQs) is necessary in order to prove optimal pointwise in time error bounds for proper orthogonal decomposition (POD) reduced order models of the heat equation. In this work, we introduce a new approach to including DQs in the POD procedure. Instead of computing the POD modes using all of the snapshot data and DQs, we only use the first snapshot along with all of the DQs and special POD weights. We show that this approach retains all of the numerical analysis benefits of the standard POD DQ approach, while using a POD data set that has approximately half the number of snapshots as the standard POD DQ approach, i.e., the new approach requires less computational effort. We illustrate our theoretical results with numerical experiments.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] A critical review of flow field analysis methods involving proper orthogonal decomposition and quadruple proper orthogonal decomposition for internal combustion engines
    Rulli, Federico
    Fontanesi, Stefano
    d'Adamo, Alessandro
    Berni, Fabio
    INTERNATIONAL JOURNAL OF ENGINE RESEARCH, 2021, 22 (01) : 222 - 242
  • [42] An object-oriented framework for reduced-order models using proper orthogonal decomposition (POD)
    Aquino, Wilkins
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (41-44) : 4375 - 4390
  • [43] Proper Orthogonal Decomposition of the Pressure Field in Bluff Bodies
    Rehman, Danish
    Akhtar, Imran
    Naqvi, Muntazir
    2013 10TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2013, : 196 - 202
  • [44] Isogeometric analysis and proper orthogonal decomposition for parabolic problems
    Zhu, Shengfeng
    Dede, Luca
    Quarteroni, Alfio
    NUMERISCHE MATHEMATIK, 2017, 135 (02) : 333 - 370
  • [45] A variational approach for parameter estimation based on balanced proper orthogonal decomposition
    Altaf, M. U.
    McCabe, M. F.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 344 : 694 - 710
  • [46] PRESERVING SYMMETRIES IN THE PROPER ORTHOGONAL DECOMPOSITION
    AUBRY, N
    LIAN, WY
    TITI, ES
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (02) : 483 - 505
  • [47] Proper orthogonal decomposition for optimality systems
    Kunisch, Karl
    Volkwein, Stefan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (01): : 1 - 23
  • [48] Proper orthogonal decomposition and its applications
    Sanghi, Sanjeev
    Hasan, Nadeem
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2011, 6 (01) : 120 - 128
  • [49] Artificial viscosity proper orthogonal decomposition
    Borggaard, Jeff
    Iliescu, Traian
    Wang, Zhu
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (1-2) : 269 - 279
  • [50] HIERARCHICAL APPROXIMATE PROPER ORTHOGONAL DECOMPOSITION
    Himpe, Christian
    Leibner, Tobias
    Rave, Stephan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (05) : A3267 - A3292