A new approach to proper orthogonal decomposition with difference quotients

被引:6
|
作者
Eskew, Sarah Locke [1 ]
Singler, John R. [2 ]
机构
[1] Univ Tennessee Southern, Sch Math & Sci, 433 Madison St, Pulaski, TN 38478 USA
[2] Missouri Univ Sci & Technol, Dept Math & Stat, 400 W 12th St, Rolla, MO 65401 USA
基金
美国国家科学基金会;
关键词
Proper orthogonal decomposition; Projections; Approximation theory; Difference quotients; Reduced order models; REDUCED-ORDER MODELS; ERROR-BOUNDS; REDUCTION; POD; APPROXIMATION; OPTIMALITY;
D O I
10.1007/s10444-023-10011-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a recent work (Koc et al., SIAM J. Numer. Anal. 59(4), 2163-2196, 2021), the authors showed that including difference quotients (DQs) is necessary in order to prove optimal pointwise in time error bounds for proper orthogonal decomposition (POD) reduced order models of the heat equation. In this work, we introduce a new approach to including DQs in the POD procedure. Instead of computing the POD modes using all of the snapshot data and DQs, we only use the first snapshot along with all of the DQs and special POD weights. We show that this approach retains all of the numerical analysis benefits of the standard POD DQ approach, while using a POD data set that has approximately half the number of snapshots as the standard POD DQ approach, i.e., the new approach requires less computational effort. We illustrate our theoretical results with numerical experiments.
引用
收藏
页数:33
相关论文
共 50 条
  • [11] A nonintrusive reduced order modelling approach using Proper Orthogonal Decomposition and locally adaptive sparse grids
    Alsayyari, Fahad
    Perko, Zoltan
    Lathouwers, Danny
    Kloosterman, Jan Leen
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 399
  • [12] A proper orthogonal decomposition method for nonlinear flows with deforming meshes
    Freno, Brian A.
    Cizmas, Paul G. A.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2014, 50 : 145 - 159
  • [13] Multilevel Algorithm for Obtaining the Proper Orthogonal Decomposition
    Behzad, Fariduddin
    Helenbrook, Brian T.
    Ahmadi, Goodarz
    AIAA JOURNAL, 2018, 56 (11) : 4423 - 4436
  • [14] AN ANALYSIS OF GALERKIN PROPER ORTHOGONAL DECOMPOSITION FOR SUBDIFFUSION
    Jin, Bangti
    Zhou, Zhi
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (01): : 89 - 113
  • [15] Gradient-enhanced surrogate modeling based on proper orthogonal decomposition
    Zimmermann, Ralf
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 237 (01) : 403 - 418
  • [16] A reduced finite difference scheme based on singular value decomposition and proper orthogonal decomposition for Burgers equation
    Luo, Zhendong
    Yang, Xiaozhong
    Zhou, Yanjie
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 229 (01) : 97 - 107
  • [17] Augmented proper orthogonal decomposition for problems with moving discontinuities
    Brenner, Thomas A.
    Fontenot, Raymond L.
    Cizmas, Paul G. A.
    O'Brien, Thomas J.
    Breault, Ronald W.
    POWDER TECHNOLOGY, 2010, 203 (01) : 78 - 85
  • [18] Wavelet adaptive proper orthogonal decomposition for large-scale flow data
    Krah, Philipp
    Engels, Thomas
    Schneider, Kai
    Reiss, Julius
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (02)
  • [19] Error analysis of an incremental proper orthogonal decomposition algorithm for PDE simulation data
    Fareed, Hiba
    Singler, John R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 368
  • [20] Using proper orthogonal decomposition to model off-reference flow conditions
    Freno, Brian A.
    Brenner, Thomas A.
    Cizmas, Paul G. A.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2013, 54 : 76 - 84