Exponential distribution optimizer (EDO): a novel math-inspired algorithm for global optimization and engineering problems

被引:90
|
作者
Abdel-Basset, Mohamed [1 ]
El-Shahat, Doaa [1 ]
Jameel, Mohammed [2 ]
Abouhawwash, Mohamed [3 ,4 ]
机构
[1] Zagazig Univ, Fac Comp & Informat, Zagazig 44519, Ash Sharqia Gov, Egypt
[2] Sanaa Univ, Fac Sci, Dept Math, 13509, Sanaa, Yemen
[3] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[4] Michigan State Univ, Dept Computat Math Sci & Engn CMSE, E Lansing, MI 48824 USA
关键词
Swarm intelligence; Exponential distribution optimizer algorithm; Memoryless property; Stochastic; Engineering design problem; PARTICLE SWARM OPTIMIZATION; COOPERATIVE COEVOLUTIONARY ALGORITHM; META-HEURISTIC OPTIMIZATION; GENETIC ALGORITHM; DIFFERENTIAL EVOLUTION; COMPETITIVE ALGORITHM; DESIGN; HYBRID; COLONY; SYSTEM;
D O I
10.1007/s10462-023-10403-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Numerous optimization problems can be addressed using metaheuristics instead of deterministic and heuristic approaches. This study proposes a novel population-based metaheuristic algorithm called the Exponential Distribution Optimizer (EDO). The main inspiration for EDO comes from mathematics based on the exponential probability distribution model. At the outset, we initialize a population of random solutions representing multiple exponential distribution models. The positions in each solution represent the exponential random variables. The proposed algorithm includes two methodologies for exploitation and exploration strategies. For the exploitation stage, the algorithm utilizes three main concepts, memoryless property, guiding solution and the exponential variance among the exponential random variables to update the current solutions. To simulate the memoryless property, we assume that the original population contains only the winners that obtain good fitness. We construct another matrix known as memoryless to retain the newly generated solutions regardless of their fitness compared to their corresponding winners in the original population. As a result, the memoryless matrix stores two types of solutions: winners and losers. According to the memoryless property, we disregard and do not memorize the previous history of these solutions because past failures are independent and have no influence on the future. The losers can thus contribute to updating the new solutions next time. We select two solutions from the original population derived from the exponential distributions to update the new solution throughout the exploration phase. Furthermore, EDO is tested against classical test functions in addition to the Congress on Evolutionary Computation (CEC) 2014, CEC 2017, CEC 2020 and CEC 2022 benchmarks, as well as six engineering design problems. EDO is compared with the winners of CEC 2014, CEC 2017 and CEC 2020, which are L-SHADE, LSHADE-cnEpSin and AGSK, respectively. EDO reveals exciting results and can be a robust tool for CEC competitions. Statistical analysis demonstrates the superiority of the proposed EDO at a 95% confidence interval.
引用
收藏
页码:9329 / 9400
页数:72
相关论文
共 50 条
  • [31] A novel algorithm for global optimization: Rat Swarm Optimizer
    Dhiman, Gaurav
    Garg, Meenakshi
    Nagar, Atulya
    Kumar, Vijay
    Dehghani, Mohammad
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (08) : 8457 - 8482
  • [32] Application of a novel metaheuristic algorithm inspired by stadium spectators in global optimization problems
    Nemati, Mehrdad
    Zandi, Yousef
    Agdas, Alireza Sadighi
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [33] A meta-inspired termite queen algorithm for global optimization and engineering design problems
    Chen, Peng
    Zhou, Shihua
    Zhang, Qiang
    Kasabov, Nikola
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 111
  • [34] Pied kingfisher optimizer: a new bio-inspired algorithm for solving numerical optimization and industrial engineering problems
    Bouaouda A.
    Hashim F.A.
    Sayouti Y.
    Hussien A.G.
    Neural Computing and Applications, 2024, 36 (25) : 15455 - 15513
  • [35] Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
    Mirjalili, Seyedali
    Gandomi, Amir H.
    Mirjalili, Seyedeh Zahra
    Saremi, Shahrzad
    Faris, Hossam
    Mirjalili, Seyed Mohammad
    ADVANCES IN ENGINEERING SOFTWARE, 2017, 114 : 163 - 191
  • [36] Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer
    Jeffrey O. Agushaka
    Absalom E. Ezugwu
    Laith Abualigah
    Neural Computing and Applications, 2023, 35 : 4099 - 4131
  • [37] Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer
    Agushaka, Jeffrey O.
    Ezugwu, Absalom E.
    Abualigah, Laith
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (05): : 4099 - 4131
  • [38] Enzyme action optimizer: a novel bio-inspired optimization algorithm
    Rodan, Ali
    Al-Tamimi, Abdel-Karim
    Al-Alnemer, Loai
    Mirjalili, Seyedali
    Tino, Peter
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (05):
  • [39] Enhanced leadership-inspired grey wolf optimizer for global optimization problems
    Shubham Gupta
    Kusum Deep
    Engineering with Computers, 2020, 36 : 1777 - 1800
  • [40] Enhanced leadership-inspired grey wolf optimizer for global optimization problems
    Gupta, Shubham
    Deep, Kusum
    ENGINEERING WITH COMPUTERS, 2020, 36 (04) : 1777 - 1800