3D Cold-Trap Environment Printing for Long-Cycle Aqueous Zn-Ion Batteries

被引:74
作者
Lu, Hongyu [1 ]
Hu, Jisong [2 ,3 ]
Zhang, Yan [4 ,5 ]
Zhang, Kaiqi [2 ]
Yan, Xiaoying [2 ]
Li, Heqi [2 ]
Li, Jianzhu [1 ]
Li, Yujie [1 ,2 ]
Zhao, Jingxin [6 ]
Xu, Bingang [6 ]
机构
[1] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Peoples R China
[2] Harbin Inst Technol Weihai, Sch Mat Sci & Engn, Weihai 264209, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[4] Nankai Univ, Inst Polymer Chem, Coll Chem, Key Lab Funct Polymer Mat, Tianjin 300071, Peoples R China
[5] Nankai Univ, Inst Polymer Chem, Coll Chem, State Key Lab Med Chem Biol, Tianjin 300071, Peoples R China
[6] Hong Kong Polytech Univ, Nanotechnol Ctr, Sch Fash & Text, Hung Hom,Kowloon, Hong Kong 999077, Peoples R China
关键词
3D cold-trap environment printing; 3DCEP-MXene; Zn-P anodes; lattice matching; physical confinement effects; Zn-ion batteries;
D O I
10.1002/adma.202209886
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zn powder (Zn-P)-based anodes are always regarded as ideal anode candidates for zinc ion batteries owing to their low cost and ease of processing. However, the intrinsic negative properties of Zn-P-based anodes such as easy corrosion and uncontrolled dendrite growth have limited their further applications. Herein, a novel 3D cold-trap environment printing (3DCEP) technology is proposed to achieve the MXene and Zn-P (3DCEP-MXene/Zn-P) anode with highly ordered arrangement. Benefitting from the unique inhibition mechanism of high lattice matching and physical confinement effects within the 3DCEP-MXene/Zn-P anode, it can effectively homogenize the Zn2+ flux and alleviate the Zn deposition rate of the 3DCEP-MXene/Zn-P anode during Zn plating-stripping. Consequently, the 3DCEP-MXene/Zn-P anode exhibits a superior cycling lifespan of 1400 h with high coulombic efficiency of approximate to 9.2% in symmetric batteries. More encouragingly, paired with MXene and Co doped MnHCF cathode via 3D cold-trap environment printing (3 DCEP-MXene/Co-MnHCF), the 3DCEP-MXene/Zn-P//3DCEP-MXene/Co-MnHCF full battery delivers high cyclic durability with the capacity retention of 95.7% after 1600 cycles. This study brings an inspired universal pathway to rapidly fabricate a reversible Zn anode with highly ordered arrangement in a cold environment for micro-zinc storage systems.
引用
收藏
页数:13
相关论文
共 58 条
[1]   van der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations [J].
Bjorkman, T. ;
Gulans, A. ;
Krasheninnikov, A. V. ;
Nieminen, R. M. .
PHYSICAL REVIEW LETTERS, 2012, 108 (23)
[2]   Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode [J].
Cai, Yangsheng ;
Liu, Fei ;
Luo, Zhigao ;
Fang, Guozhao ;
Zhou, Jiang ;
Pan, Anqiang ;
Liang, Shuquan .
ENERGY STORAGE MATERIALS, 2018, 13 :168-174
[3]   Regulating Dendrite-Free Zinc Deposition by 3D Zincopilic Nitrogen-Doped Vertical Graphene for High-Performance Flexible Zn-Ion Batteries [J].
Cao, Qinghe ;
Gao, Heng ;
Gao, Yong ;
Yang, Jie ;
Li, Chun ;
Pu, Jie ;
Du, Junjie ;
Yang, Jiayu ;
Cai, Dongming ;
Pan, Zhenghui ;
Guan, Cao ;
Huang, Wei .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (37)
[4]   Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material [J].
Chae, Munseok S. ;
Heo, Jongwook W. ;
Kwak, Hunho H. ;
Lee, Hochun ;
Hong, Seung-Tae .
JOURNAL OF POWER SOURCES, 2017, 337 :204-211
[5]   Realizing an All-Round Hydrogel Electrolyte toward Environmentally Adaptive Dendrite-Free Aqueous Zn-MnO2 Batteries [J].
Chen, Minfeng ;
Chen, Jizhang ;
Zhou, Weijun ;
Han, Xiang ;
Yao, Yagang ;
Wong, Ching-Ping .
ADVANCED MATERIALS, 2021, 33 (09)
[6]   Zn2+ Induced Phase Transformation of K2MnFe(CN)6 Boosts Highly Stable Zinc-Ion Storage [J].
Deng, Wenjun ;
Li, Zhengang ;
Ye, Yaokun ;
Zhou, Zhuqing ;
Li, Yibo ;
Zhang, Man ;
Yuan, Xinran ;
Hu, Jun ;
Zhao, Wenguang ;
Huang, Zhongyuan ;
Li, Chang ;
Chen, Haibiao ;
Zheng, Jiaxin ;
Li, Rui .
ADVANCED ENERGY MATERIALS, 2021, 11 (31)
[7]   Nonaqueous electrolyte with dual-cations for high-voltage and long-life zinc batteries [J].
Dong, Yang ;
Di, Shengli ;
Zhang, Fangbo ;
Bian, Xu ;
Wang, Yuanyuan ;
Xu, Jianzhong ;
Wang, Liubin ;
Cheng, Fangyi ;
Zhang, Ning .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (06) :3252-3261
[8]   Enable commercial Zinc powders for dendrite-free Zinc anode with improved utilization rate by pristine graphene hybridization [J].
Du, Wencheng ;
Huang, Song ;
Zhang, Yufei ;
Ye, Minghui ;
Li, Cheng Chao .
ENERGY STORAGE MATERIALS, 2022, 45 :465-473
[9]   Stress-Release Functional Liquid Metal-MXene Layers toward Dendrite-Free Zinc Metal Anodes [J].
Gu, Jianan ;
Tao, Yi ;
Chen, Hao ;
Cao, Zhenjiang ;
Zhang, Yongzheng ;
Du, Zhiguo ;
Cui, Yanglansen ;
Yang, Shubin .
ADVANCED ENERGY MATERIALS, 2022, 12 (16)
[10]   Microfluidic Printheads for Multimaterial 3D Printing of Viscoelastic Inks [J].
Hardin, James O. ;
Ober, Thomas J. ;
Valentine, Alexander D. ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2015, 27 (21) :3279-3284