Estimates for generalized Bohr radii in one and higher dimensions

被引:2
|
作者
Das, Nilanjan [1 ]
机构
[1] Indian Stat Inst Kolkata, Theoret Stat & Math Unit, Kolkata 700108, India
关键词
Bohr radius; holomorphic functions; Banach spaces; THEOREM; INEQUALITY;
D O I
10.4153/S0008439522000674
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study a generalized Bohr radius R-p,R-q(X), p, q is an element of [1, infinity) defined for a complex Banach space X. In particular, we determine the exact value of R-p,R-q(C) for the cases (i) p, q is an element of [1, 2], (ii) p is an element of (2, infinity), q is an element of [1, 2], and (iii) p, q is an element of [2, infinity). Moreover, we consider an n-variable version R-p,q(n)(X) of the quantity R-p,R-q(X) and determine (i) R-p,q(n)(H) for an infinite-dimensional complex Hilbert space 7-C and (ii) the precise asymptotic value of R-p,q(n)(X) as n -> infinity for finite-dimensional X. We also study the multidimensional analog of a related concept called the p-Bohr radius. To be specific, we obtain the asymptotic value of the n-dimensional p-Bohr radius for bounded complex-valued functions, and in the vector-valued case, we provide a lower estimate for the same, which is independent of n.
引用
收藏
页码:682 / 699
页数:18
相关论文
共 50 条
  • [41] A logarithmic lower bound for multi-dimensional Bohr radii
    Defant, Andreas
    Frerick, Leonhard
    ISRAEL JOURNAL OF MATHEMATICS, 2006, 152 (1) : 17 - 28
  • [42] A Generalized Bohr–Rogosinski Phenomenon
    Kamaljeet Gangania
    S. Sivaprasad Kumar
    Iranian Journal of Science, 2023, 47 : 187 - 198
  • [43] A logarithmic lower bound for multi-dimensional bohr radii
    Andreas Defant
    Leonhard Frerick
    Israel Journal of Mathematics, 2006, 152 : 17 - 28
  • [44] Generalized solutions for the Euler equations in one and two dimensions
    Bernot, Marc
    Figalli, Alessio
    Santambrogio, Filippo
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 91 (02): : 137 - 155
  • [45] Lyapunov functions in estimates of attractor dimensions for generalized Rössler systems
    G. A. Leonov
    T. A. Alexeeva
    Doklady Mathematics, 2015, 91 : 5 - 8
  • [46] Generalized Shastry-Sutherland models in three and higher dimensions
    Surendran, N
    Shankar, R
    PHYSICAL REVIEW B, 2002, 66 (02) : 244151 - 244155
  • [47] HOLOGRAPHIC DARK ENERGY WITH GENERALIZED CHAPLYGIN GAS IN HIGHER DIMENSIONS
    Ghose, S.
    Saha, A.
    Paul, B. C.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2014, 23 (02):
  • [48] Generalized Godel universes in higher dimensions and pure Lovelock gravity
    Dadhich, Naresh
    Molina, Alfred
    Pons, Josep M.
    PHYSICAL REVIEW D, 2017, 96 (08)
  • [49] Dispersive Estimates for Schrödinger Operators in Dimensions One and Three
    M. Goldberg
    W. Schlag
    Communications in Mathematical Physics, 2004, 251 : 157 - 178
  • [50] Position dependent random maps in one and higher dimensions
    Bahsoun, W
    Góra, P
    STUDIA MATHEMATICA, 2005, 166 (03) : 271 - 286