Difference information replenishment;
Multi-modal medical image fusion;
Hybrid loss;
Unsupervised learning;
PERFORMANCE;
NETWORK;
FOCUS;
D O I:
10.1007/s10489-022-03819-3
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Existing image fusion methods always ignore complementary features and saliency from different inputs. To address these limitations, this paper proposes an unsupervised multi-level difference information replenishment fusion network for multimodal medical image fusion (MMIF). Considering some features obliterated between layers, we design a multi-layer feature compensation module in our network to make fused images richer and more complete. Furthermore, we develop a novel fusion strategy to make the result maintain the subjective definition and intuitive features of the original images while adjusting the fused emphasis. On this basis, functional image fusion avoids color distortion by YIN processing. In addition, a hybrid loss is introduced to train our network. L-fid provides the structural similarity for the fidelity term, L-lum is utilized for the luminance maintaining term, and L-sd presents the better gradient for the detail preserving term. Qualitative and quantitative experiments prove the superiority of our method over other state-of-the-art methods.
引用
收藏
页码:4579 / 4591
页数:13
相关论文
共 43 条
[1]
Boski M, 2017, 2017 10TH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS (NDS)