A lightweight algorithm for small traffic sign detection based on improved YOLOv5s

被引:0
|
作者
Cai, Kunhui [1 ,2 ]
Yang, Jingmin [1 ,2 ,3 ]
Ren, Jinghui [1 ,2 ]
Zhang, Wenjie [1 ,2 ]
机构
[1] Minnan Normal Univ, Sch Comp Sci, Zhangzhou 363000, Fujian, Peoples R China
[2] Fujian Prov Univ, Key Lab Data Sci & Intelligence Applicat, Zhangzhou 363000, Fujian, Peoples R China
[3] Taipei Univ Technol, Dept Elect Engn, Taipei, Taiwan
关键词
Traffic sign detection; Small object; Lightweight network; YOLOv5s;
D O I
10.1007/s11760-024-03118-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the rise of deep learning technology, significant progress has been made in object detection. Traffic sign detection is a research hotspot for object detection tasks. However, due to small size of traffic signs, there is room for further improvement in the comprehensive performance of the existing technology. In this paper, we propose a lightweight network based on yolov5s to achieve real-time localization and classification of small traffic signs. First, we improve the bottleneck transformers with 3 convolution (Bot3) module to enhance the backbone network's ability to extract features from small targets, improving the accuracy while reducing the number of parameters and giga floating-point operations per second (GFLOPs). Second, we introduce ghost convolution (GhostConv) to obtain redundant feature maps with cheap operations to further improve the model's efficiency. Finally, we use soft non-maximum suppression (Soft-NMS) in the detection phase to improve the model accuracy again without additional computational overhead for training. According to the tests on the Tsinghua-Tencent 100 K (TT100K) dataset, the proposed method outperforms the original YOLOv5s in small traffic sign detection, with an increase of 8.7% in mAP50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$mAP_{50}$$\end{document}, a reduction of 22.5% in parameter count, and a 17.2% reduction in computational complexity.
引用
收藏
页码:4821 / 4829
页数:9
相关论文
共 50 条
  • [21] Defect Detection Algorithm Based on Lightweight and Improved YOLOv5s for Visible Light Insulators
    Xie J.
    Du Y.
    Liu Z.
    Liu H.
    Wang T.
    Miao M.
    Dianwang Jishu/Power System Technology, 2023, 47 (12): : 5273 - 5282
  • [22] Insulator defect detection in transmission line based on an improved lightweight YOLOv5s algorithm
    Wei, Liangliang
    Jin, Jun
    Deng, Kaiyuan
    Liu, Han
    ELECTRIC POWER SYSTEMS RESEARCH, 2024, 233
  • [23] Improved Pedestrian Detection Algorithm Based on YOLOv5s
    Li, Zhihua
    Zhang, Yuanbiao
    Wang, Chao
    Tan, Guopeng
    Yan, Yahui
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2024, 28 (04) : 768 - 775
  • [24] Improved YOLOv5s algorithm for small item detection of wheelhouse
    Hui, Jin
    Juan, Wang
    Zulii, Wang
    Dan, Long
    2022 INTERNATIONAL CONFERENCE ON CYBER-ENABLED DISTRIBUTED COMPUTING AND KNOWLEDGE DISCOVERY, CYBERC, 2022, : 222 - 225
  • [25] Improved YOLOv5’s Traffic Sign Detection Algorithm
    Yang, Xiang
    Wang, Huabin
    Dong, Minggang
    Computer Engineering and Applications, 2023, 59 (13) : 194 - 204
  • [26] UAV small target detection algorithm based on an improved YOLOv5s model
    Cao, Shihai
    Wang, Ting
    Li, Tao
    Mao, Zehui
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 97
  • [27] Two Novel Models for Traffic Sign Detection Based on YOLOv5s
    Bai, Wei
    Zhao, Jingyi
    Dai, Chenxu
    Zhang, Haiyang
    Zhao, Li
    Ji, Zhanlin
    Ganchev, Ivan
    AXIOMS, 2023, 12 (02)
  • [28] Roadside Target Detection Algorithm for Complex Traffic Scene Based on Improved YOLOv5s
    Yang, Ruining
    Hui, Fei
    Jin, Xin
    Hou, Ruiyu
    Computer Engineering and Applications, 2023, 59 (16) : 159 - 169
  • [29] High-Performance Lightweight Fall Detection with an Improved YOLOv5s Algorithm
    Wang, Yuanpeng
    Chi, Zhaozhan
    Liu, Meng
    Li, Guangxian
    Ding, Songlin
    MACHINES, 2023, 11 (08)
  • [30] Apple surface defect detection based on lightweight improved YOLOv5s
    Lv L.
    Yilihamu Y.
    Ye Y.
    International Journal of Information and Communication Technology, 2024, 24 (07) : 113 - 128