Friedrichs diagrams: bosonic and fermionic

被引:0
|
作者
Brooks, Morris [1 ]
Lill, Sascha [2 ]
机构
[1] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[2] Univ Milan, Dipartimento Matemat, Via Cesare Saldini 50, I-20133 Milan, Italy
基金
欧洲研究理事会;
关键词
Friedrichs diagrams; Many-body physics; Quantum field theory; Hartree equation; Feynman diagrams;
D O I
10.1007/s11005-023-01715-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a mathematically precise review of a diagrammatic language introduced by Friedrichs in order to simplify computations with creation and annihilation operator products. In that language, we establish explicit formulas and algorithms for evaluating bosonic and fermionic commutators. Further, as an application, we demonstrate that the nonlinear Hartree dynamics can be seen as a subset of the diagrams arising in the time evolution of a Bose gas.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Lowest Landau level theory of the bosonic Jain states
    Goldman, Hart
    Senthil, T.
    PHYSICAL REVIEW B, 2022, 105 (07)
  • [42] Fermionic bound states on a one-dimensional lattice
    Nguenang, Jean-Pierre
    Flach, Sergej
    PHYSICAL REVIEW A, 2009, 80 (01):
  • [43] Deformations of Fermionic Quantum Field Theories and Integrable Models
    Alazzawi, Sabina
    LETTERS IN MATHEMATICAL PHYSICS, 2013, 103 (01) : 37 - 58
  • [44] Interlayer Superfluidity in Bilayer Systems of Fermionic Polar Molecules
    Pikovski, A.
    Klawunn, M.
    Shlyapnikov, G. V.
    Santos, L.
    PHYSICAL REVIEW LETTERS, 2010, 105 (21)
  • [45] Deformations of Fermionic Quantum Field Theories and Integrable Models
    Sabina Alazzawi
    Letters in Mathematical Physics, 2013, 103 : 37 - 58
  • [46] Supergravity as a special case of local nilpotent fermionic symmetry
    Nishino, Hitoshi
    Rajpoot, Subhash
    PHYSICAL REVIEW D, 2013, 88 (02):
  • [47] Feynman Diagrams: A Toy Example
    Raghu Mahajan
    Vijay A. Singh
    Resonance, 2019, 24 : 653 - 659
  • [48] Feymnan diagrams for pedestrians and mathematicians
    Polyak, M
    GRAPHS AND PATTERNS IN MATHEMATICS AND THEORETICAL PHYSICS, PROCEEDINGS, 2005, 73 : 15 - 42
  • [49] Grope cobordism and Feynman diagrams
    Conant, J
    Teichner, P
    MATHEMATISCHE ANNALEN, 2004, 328 (1-2) : 135 - 171
  • [50] Feynman diagrams and rooted maps
    Prunotto, Andrea
    Alberico, Wanda Maria
    Czerski, Piotr
    OPEN PHYSICS, 2018, 16 (01): : 149 - 167